These notes contain an introduction to the theory of spherical and wonderful varieties. We describe the Luna-Vust theory of embeddings of spherical homogeneous spaces, and explain how wonderful varieties fit in the theory.
@article{CCIRM_2010__1_1_33_0, author = {Guido Pezzini}, title = {Lectures on spherical and wonderful varieties}, journal = {Les cours du CIRM}, pages = {33--53}, publisher = {CIRM}, volume = {1}, number = {1}, year = {2010}, doi = {10.5802/ccirm.3}, language = {en}, url = {https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.3/} }
Guido Pezzini. Lectures on spherical and wonderful varieties. Les cours du CIRM, Tome 1 (2010) no. 1, pp. 33-53. doi : 10.5802/ccirm.3. https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.3/
[A83] D.N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78.
[B09] P. Bravi, Classification of spherical varieties, in this volume
[BL08] P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type , arXiv:0812.2340v1.
[Br89] M. Brion, On spherical varieties of rank one, CMS Conf. Proc. 10 (1989), 31–41.
[Br90] M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143.
[Br97] M. Brion, Variétés sphériques, http://www-fourier.ujf-grenoble.fr/mbrion/spheriques.ps
[Br09] M. Brion, Introduction to actions of algebraic groups, in this volume.
[DP83] C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer, Berlin, 1983, 1–44.
[F93] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, NJ, 1993.
[H75] J. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York-Heidelberg, 1975.
[HS82] A. Huckleberry, D. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. of Math. 19 (1982), 763–786.
[K91] F. Knop., The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991.
[K96] F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174.
[KKLV89] F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, T. Springer eds.) DMV-Seminar 13, Birkhäuser Verlag (Basel-Boston) (1989) 63–76.
[L07] I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Mathematical Journal 147 (2009), no. 2, 315–343.
[Lu96] D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249–258.
[Lu97] D. Luna, Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 267–280.
[Lu01] D. Luna, Variétés sphériques de type , Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226.
[LV83] Luna, D. and Vust, T., Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245.
[T06] D.A. Timashev, Homogeneous spaces and equivariant embedding, arXiv:math/0602228v1.
Cité par Sources :