@article{CCIRM_2010__1_1_23_0, author = {Thomas Delzant and Christophe Wacheux}, title = {Actions hamiltoniennes}, journal = {Les cours du CIRM}, pages = {23--31}, publisher = {CIRM}, volume = {1}, number = {1}, year = {2010}, doi = {10.5802/ccirm.2}, language = {fr}, url = {https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.2/} }
Thomas Delzant; Christophe Wacheux. Actions hamiltoniennes. Les cours du CIRM, Volume 1 (2010) no. 1, pp. 23-31. doi : 10.5802/ccirm.2. https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.2/
[Bre] Bredon, G.E., Introduction to compact transformation groups Pure and Applied Mathematics, Vol. 46. Academic Press, New York-London, 1972.
[De] Delzant, T., Classification des actions hamiltoniennes complètement intégrables de rang 2, Ann. Global Anal. Geom. 8 (1990), no. 1, 87–112.
[Gui] Guillemin, V., Moment maps and combinatorial invariants of Hamiltonian -spaces . -Boston : Birkhäuser, 1994.
[Kn2] Knop, F., Automorphisms of multiplicity-free Hamiltonian manifolds , arXiv :1002.4256
[Kn-VS] Knop, F., Van Steirteghem, B., Classification of smooth affine spherical varieties, Transform. Groups 11 (2006), no.3, 495–516.
[Los] Losev, I., Proof of the Knop conjecture Annales de l’institut Fourier, 59 no.3 (2009), p. 1105-1134.
[McD-Sal] McDuff, D., Salamon, D., Introduction to symplectic topology, 2nd edition, Oxford University Press, 1998.
[Sou] Souriau, J.-M., Structure of Dynamical Systems : A Symplectic View of Physics, Springer Verlag, 1997.
[Wei] Weistein, A., Lectures on symplectic geometry , Providence RI : American mathematical society, 1977.
[Woo1] Woodward, C., Spherical varieties and existence of invariant Kähler structures, Duke Math. J. 93 (1998), no. 2, 345–377.
[Woo2] Woodward, C., Multiplicity-free Hamiltonian actions need not be Kähler, Invent. Math. 131 (1998), no. 2, 311–319.
Cited by Sources: