Mersenne banner

Les cours du CIRM

Browse issues
or
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Full text
  • Browse issues
  • Volume 6 (2018)
  • no. 1
  • Talk no. 1
  • Next
no. 1
Symbolic tensor calculus on manifolds: a SageMath implementation
Éric Gourgoulhon1; Marco Mancini
1 Laboratoire Univers et Théories CNRS, Observatoire de Paris, Université Paris Diderot, Université Paris Sciences et Lettres 92190 Meudon, France
Les cours du CIRM, Volume 6 (2018) no. 1, Talk no. 1, 54 p.
  • Article information
  • Export
  • How to cite
Published online: 2019-01-28
DOI: 10.5802/ccirm.26
Author's affiliations:
Éric Gourgoulhon 1; Marco Mancini 

1 Laboratoire Univers et Théories CNRS, Observatoire de Paris, Université Paris Diderot, Université Paris Sciences et Lettres 92190 Meudon, France
  • BibTeX
  • RIS
  • EndNote
@article{CCIRM_2018__6_1_A1_0,
     author = {\'Eric Gourgoulhon and Marco Mancini},
     title = {Symbolic tensor calculus on manifolds: a {SageMath} implementation},
     journal = {Les cours du CIRM},
     note = {talk:1},
     publisher = {CIRM},
     volume = {6},
     number = {1},
     year = {2018},
     doi = {10.5802/ccirm.26},
     language = {en},
     url = {https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.26/}
}
TY  - JOUR
TI  - Symbolic tensor calculus on manifolds: a SageMath implementation
JO  - Les cours du CIRM
N1  - talk:1
PY  - 2018
DA  - 2018///
VL  - 6
IS  - 1
PB  - CIRM
UR  - https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.26/
UR  - https://doi.org/10.5802/ccirm.26
DO  - 10.5802/ccirm.26
LA  - en
ID  - CCIRM_2018__6_1_A1_0
ER  - 
%0 Journal Article
%T Symbolic tensor calculus on manifolds: a SageMath implementation
%J Les cours du CIRM
%Z talk:1
%D 2018
%V 6
%N 1
%I CIRM
%U https://doi.org/10.5802/ccirm.26
%R 10.5802/ccirm.26
%G en
%F CCIRM_2018__6_1_A1_0
Éric Gourgoulhon; Marco Mancini. Symbolic tensor calculus on manifolds: a SageMath implementation. Les cours du CIRM, Volume 6 (2018) no. 1, Talk no. 1, 54 p. doi : 10.5802/ccirm.26. https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.26/
  • References
  • Cited by

[1] I.M. Anderson and C.G. Torre: New symbolic tools for differential geometry, gravitation, and field theory, J. Math. Phys. 53, 013511 (2012);

[2]

[3] G.V. Bard Sage for Undergraduates, Americ. Math. Soc. (2015); preprint freely downloadable from

[4] T. Birkandan, C. Güzelgün, E. Şirin and M. Can Uslu: Symbolic and Numerical Analysis in General Relativity with Open Source Computer Algebra Systems, arXiv:1703.09738v2 (2018).

[5] D.A. Bolotin and S.V. Poslavsky: Introduction to Redberry: the computer algebra system designed for tensor manipulation, arXiv:1302.1219 (2013);

[6] M. Culler, N. M. Dunfield, M. Goerner, and J. R. Weeks: SnapPy, a computer program for studying the geometry and topology of 3-manifolds;

[7] J.G. Fletcher, R. Clemens, R. Matzner, K.S. Thorne and B.A. Zimmerman: Computer Programs for Calculating General-Relativistic Curvature Tensors, Astrophys. J. 148, L91 (1967).

[8]

[9] D. Joyner and W. Stein: Sage Tutorial, CreateSpace (2014).

[10] A.V. Korol’kova, D.S. Kulyabov and L.A. Sevast’yanov: Tensor computations in computer algebra systems, Prog. Comput. Soft. 39, 135 (2013).

[11] J. M. Lee : Riemannian Manifolds: An Introduction to Curvature, Springer, New-York (1997).

[12] J. M. Lee : Introduction to Smooth Manifolds, 2nd edition, Springer, New-York (2013).

[13] M.A.H. MacCallum: Computer Algebra in General Relativity, Int. J. Mod. Phys. A 17, 2707 (2002).

[14] M.A.H. MacCallum: Computer algebra in gravity research, Liv. Rev. Relat. 21, 6 (2018); | Article

[15] J.-M. Martin-Garcia: xPerm: fast index canonicalization for tensor computer algebra, Comput. Phys. Commun. 179, 597 (2008);

[16] J. W. Milnor : On manifolds homeomorphic to the 7-sphere, Ann. Math. 64, 399 (1956).

[17] B. O’Neill : Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York (1983).

[18]

[19] K. Peeters: Symbolic field theory with Cadabra, Comput. Phys. Commun. 15, 550 (2007);

[20]

[21]

[22] J.E.F. Skea: Applications of SHEEP (1994), lecture notes available at

[23] N. Steenrod: The Topology of Fibre Bundles, Princeton Univ. Press (Princeton) (1951)

[24] W. Stein and D. Joyner: SAGE: System for Algebra and Geometry Experimentation, Commun. Comput. Algebra, 39, 61 (2005).

[25] C. H. Taubes : Gauge theory on asymptotically periodic 4-manifolds, J. Differential Geom. 25, 363 (1987).

[26] V. Toth: Tensor manipulation in GPL Maxima, arXiv:cs/0503073 (2005).

[27] P. Zimmermann et al.: Calcul mathématique avec Sage, CreateSpace (2013); freely downloadable from

[28] P. Zimmermann et al.: Computational Mathematics with SageMath (2018); freely downloadable from

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us
e-ISSN : 2108-7164
© 2010 - 2022 Centre Mersenne, Les cours du CIRM, and the authors