Mersenne banner

Les cours du CIRM

Feuilleter
ou
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Plein texte
  • Précédent
  • Feuilleter
  • Tome 1 (2010)
  • no. 1
  • p. 99-111
  • Suivant
no. 1

Classification of spherical varieties
Paolo Bravi
Les cours du CIRM, Tome 1 (2010) no. 1, pp. 99-111.
  • Résumé

We give a short introduction to the problem of classification of spherical varieties, by presenting the Luna conjecture about the classification of wonderful varieties and illustrating some of the related currently known results.

  • Détail
  • BibTeX
  • Comment citer
Publié le : 2011-10-03
DOI : https://doi.org/10.5802/ccirm.5
@article{CCIRM_2010__1_1_99_0,
     author = {Paolo Bravi},
     title = {Classification of spherical varieties},
     journal = {Les cours du CIRM},
     pages = {99--111},
     publisher = {CIRM},
     volume = {1},
     number = {1},
     year = {2010},
     doi = {10.5802/ccirm.5},
     language = {en},
     url = {https://ccirm.centre-mersenne.org/item/CCIRM_2010__1_1_99_0/}
}
Paolo Bravi. Classification of spherical varieties. Les cours du CIRM, Tome 1 (2010) no. 1, pp. 99-111. doi : 10.5802/ccirm.5. https://ccirm.centre-mersenne.org/item/CCIRM_2010__1_1_99_0/
  • Bibliographie

[A] D.N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), 49–78.

[AB] V. Alexeev, M. Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), 83–117.

[BC08] P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a flag variety, Adv. Math. 217 (2008), 2800–2821.

[BC10] P. Bravi, S. Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60 (2010), to appear.

[BL09] P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, J. Algebra, to appear.

[BP05] P. Bravi, G. Pezzini, Wonderful varieties of type D, Represent. Theory, 9 (2005), 578–637.

[BP09] P. Bravi, G. Pezzini, Wonderful varieties of type B and C, arXiv:0909.3771v1 .

[Bra] P. Bravi, Wonderful varieties of type E, Represent. Theory, 11 (2007), 174–191.

[Bri87] M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189–208.

[Bri90] M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115–143.

[Bri] M. Brion, in this volume.

[C08] S. Cupit-Foutou, Invariant Hilbert schemes and wonderful varieties, arXiv:0811.1567v2 .

[C09] S. Cupit-Foutou, Wonderful varieties: a geometrical realization, arXiv:0907.2852v1 .

[DGMP] C. De Concini, M. Goresky, R. MacPharson, C. Procesi, On the geometry of quadrics and their degenerations, Comment. Math. Helv. 63 (1988), 337–413.

[DP] C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math. 996, 1–44, Springer, Berlin, 1983.

[HS] M. Haiman, B. Sturmfels, Multigraded Hilbert schemes, J. Algebraic Geom. 13 (2004), 725–769.

[Kn] F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153–174.

[Kr] M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129–153.

[Lo09] I.V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 No. 2 (2009), 315–343.

[Lo10] I.V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble), 59 (2009), no. 3, 1105–1134.

[Lo] I.V. Losev, in this volume.

[Lu96] D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), 249–258.

[Lu01] D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226.

[LV] D. Luna, T. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245.

[Mi] I.V. Mikityuk, On the integrability of invariant hamiltonian systems with homogeneous configurations spaces (in Russian), Math. Sbornik 129, 171 (1986), 514–534.

[P07] G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), 793–812.

[P] G. Pezzini, in this volume.

[W] B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), 375–403.

Diffusé par : Publié par : Développé par :
  • Nous suivre
e-ISSN : 2108-7164
© 2010 - 2021 Centre Mersenne, Les cours du CIRM, et les auteurs