
Journées Nationales de Calcul Formel

Rencontre organisée par :
Carole El Bacha, Luca De Feo, Pascal Giorgi, Marc Mezzarobba et Alban Quadrat

2018

Daniel Robertz
Formal methods for systems of partial differential equations
Vol. 6, no 1 (2018), Course no III, p. 1-37.

<http://ccirm.cedram.org/item?id=CCIRM_2018__6_1_A3_0>

Centre international de rencontres mathématiques
U.M.S. 822 C.N.R.S./S.M.F.
Luminy (Marseille) France

cedram
Texte mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ccirm.cedram.org/item?id=CCIRM_2018__6_1_A3_0
http://www.cedram.org/
http://www.cedram.org/


Les cours du C.I.R.M.
Vol. 6 no 1 (2018) 1-37
Cours no III

Formal methods for systems of partial differential
equations
Daniel Robertz

Contents

1. Introduction 1
2. Systems of linear differential equations 3
2.1. Monomial ideals 5
2.2. Janet’s algorithm 8
3. Systems of nonlinear differential equations 14
3.1. Thomas decomposition of algebraic systems 16
3.2. Thomas decomposition of differential systems 21
3.3. Elimination 27
References 31

1. Introduction

Given a system of differential equations, we would like to be able to solve the following tasks:

(a) determine all analytic solutions;
(b) obtain an overview of all consequences of the system; in particular, given another differential

equation, decide whether it is a consequence of the system or not;
(c) among the consequences find the ones which involve only certain specified unknowns.

Throughout these notes we shall consider partial differential equations (PDEs) for unknown func-
tions u1(z1, . . . , zn), . . . , um(z1, . . . , zn). Since we are going to employ formal methods, we restrict
our attention to formal power series solutions in (a). Convergence of these power series on certain
regions of Rn or Cn is to be investigated after the formal treatment. In fact, the formal treatment
may reveal conditions on how the region in Rn or Cn should be chosen. Singular points will be
excluded from consideration.

One of the first existence theorems for a large class of PDEs is the Cauchy-Kovalevskaya The-
orem (cf., e.g., [Kov75], [RR04], [Eva10]).
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Feo, Pascal Giorgi, Marc Mezzarobba and Alban Quadrat. 22-26 janvier 2018, C.I.R.M. (Luminy).
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Theorem 1.1 (Cauchy-Kovalevskaya, 1875). The Cauchy problem

∂u1

∂z1
=

n∑
j=2

m∑
k=1

a1,j,k(z2, . . . , zn, u1, . . . , um) ∂uk
∂zj

+ b1(z2, . . . , zn, u1, . . . , um) ,

...

∂um
∂z1

=
n∑
j=2

m∑
k=1

am,j,k(z2, . . . , zn, u1, . . . , um) ∂uk
∂zj

+ bm(z2, . . . , zn, u1, . . . , um) ,

u1(0, z2, . . . , zn) = 0 for all z2, . . . , zn ,

...

um(0, z2, . . . , zn) = 0 for all z2, . . . , zn ,

where ai,j,k and bi are real analytic functions around the origin of Rm+n−1, has a unique real
analytic solution (u1, . . . , um) in a neighborhood of (z1, . . . , zn) = (0, . . . , 0).

Note that any system of differential equations can be rewritten as a system of first order differ-
ential equations by introducing new unknown functions, if necessary. The differential equations in
Theorem 1.1 are quasilinear in the sense that each equation is linear in the highest derivatives of
the unknown functions. Analytic coordinate changes may be used to transform boundary data on
an analytic hypersurface which is non-characteristic for the first order PDE system to the hyper-
surface z1 = 0. Theorem 1.1 is also valid for complex analytic functions. However, the assumption
of analyticity is necessary (cf. [Lew57]).

In work of C. Méray [Mér80] and C. Riquier [Riq10] in the second half of the 19th century a
generalization of the Cauchy-Kovalevskaya Theorem was obtained. Riquier’s Existence Theorem
asserts the existence of analytic solutions to systems of PDEs of a certain class (cf. also [Tho28,
Tho34], [Rit34, Chap. IX], [Rit50, Chap. VIII]). The equations are assumed to be solved for certain
distinct partial derivatives and their right hand sides are analytic functions of z1, . . . , zn and of
partial derivatives of u1, . . . , um which are ranked lower than the ones on the respective left
hand side with respect to a certain kind of total ordering. Moreover, the system is supposed to
incorporate all integrability conditions in some sense discussed below.

These notes consist of two sections following the Introduction. Section 2 treats the problems
outlined above for systems of linear PDEs, whereas Section 3 is dedicated to the more general
case of systems of nonlinear PDEs. The discussion of the linear case leads to the notion of Janet
basis. A basic variant of an algorithm computing Janet bases is outlined in Subsection 2.2, which
builds on a method for partitioning certain sets of monomials into disjoint cones, as introduced
in Subsection 2.1. The concept of Thomas decomposition is central for the nonlinear case. It
is introduced for algebraic systems in Subsection 3.1 and is then adapted to differential systems
in Subsection 3.2. The final Subsection 3.3 explains how to apply the Thomas decomposition
technique for eliminating unknown functions from a system of nonlinear PDEs.

It is a non-trivial task to include here all relevant references. Among the most important
historical ones we select: C. Méray [Mér80], C. Riquier [Riq10], M. Janet (1888–1983) [Jan29],
J. M. Thomas (1898–1979) [Tho37, Tho62], J. F. Ritt [Rit34], [Rit50], E. R. Kolchin [Kol73] and
A. Seidenberg [Sei56]. Related references are [Olv93], [Pom78], [Pom94], [Sch08a] and many more.

Closely related to the method of Thomas decomposition is the Rosenfeld-Gröbner algorithm and
its implementation in the Maple package diffalg resp. DifferentialAlgebra (cf., e.g., [BLOP95],
[BLOP09], [Hub97], [Hub00], [Bou]), but also the method of regular chains [LMMX05] and the
rifsimp algorithm [RWB96]. Moreover, the notion of a characteristic set, introduced by J. F. Ritt
and Wen-tsün Wu, again belongs to the same circle of ideas, cf., e.g., [Wu00], [Wu89] [Wan98],
[Wan01], [Wan04], [Dio92]. Janet bases are related to Gröbner bases [Buc06, Buc87] and are
particular instances of involutive bases [GB98a, GB98b, ZB96].
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It is essential to note that the presented methods are also fundamental for further effective
module-theoretic constructions for rings of linear functional operators and their implementations,
on which applications, e.g., to systems theory are built (cf., e.g., [CQR05], [CQR07], [QR07],
[CQ08], [CQ09], [Qua10a], [Qua10b], [QR14], [Rob15]). Efficient versions of the algorithms dis-
cussed in these notes have been implemented in Maple packages (Involutive, Janet, JanetOre,
LDA, AlgebraicThomas, DifferentialThomas).

This exposition is based, in particular, on [Rob07], [Rob14], [Rob16], [LHR], [GLR19].

2. Systems of linear differential equations

In this section we assume that the given system of differential equations is linear (and homoge-
neous). In other words, for some l, m, n ∈ N, some ring D of differential operators, some matrix
of operators R ∈ Dl×m and some left D-module F we can write the system as

(2.1) Ru = 0 , where u =


u1
u2
...
um

 ,

for the unknown functions ui = ui(z1, . . . , zn) ∈ F , i = 1, . . . , m. The consequences of (2.1) are
the left D-linear combinations of the rows of R, i.e., the elements of D1×lR. (The functions in F
need to be infinitely often differentiable at least.)

Example 2.1 ([Rob14], Ex. 3.2.49). An example of a system of linear PDEs with constant coef-
ficients for one unknown function u = u(x, y) of x = z1 and y = z2 is

(2.2)


∂2u

∂x2 = 0 ,

∂2u

∂y2 + ∂u

∂x
+ ∂u

∂y
= 0 .

We may choose D to be the commutative polynomial algebra K[∂x, ∂y], where K is a field of
characteristic zero (e.g., Q, R, C, . . . ) and where ∂x and ∂y are the partial differential operators
with respect to x and y, respectively. The multiplication in D is composition of operators.

Example 2.2 ([Rob14], Ex. 3.2.38). A system of linear PDEs with non-constant coefficients for
u = u(x, y) is given by

∂3u

∂x ∂y2 −
∂3u

∂y3 − (2y + 1) ∂
2u

∂y2 − 4 ∂u
∂y

= 0 ,

∂3u

∂x2 ∂y
− ∂3u

∂y3 − 2 (2y + 1) ∂2u

∂x ∂y
+ (4y2 + 4y − 5) ∂u

∂y
= 0 .

We may choose K to be Q(x, y) or the field or meromorphic functions on some open and connected
subset Ω of C2. Moreover, we let D = K〈∂x, ∂y〉 be the ring of differential operators

r∑
i=0

s∑
j=0

ai,j ∂
i
x ∂

j
y , ai,j ∈ K , r, s ∈ Z≥0 ,

which are (skew) polynomials in ∂x and ∂y, where composition is non-commutative in general.

Example 2.3 ([Rob14], Ex. 2.1.46). Linearizing the system of nonlinear PDEs

(2.3)


∂u

∂x
− u2 = 0 ,

∂2u

∂y2 − u
3 = 0 ,
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for one unknown function u of x and y, we obtain the system of linear PDEs

(2.4)


∂U

∂x
− 2uU = 0 ,

∂2U

∂y2 − 3u2 U = 0 ,

for one unknown function U of x and y, where u is a solution of (2.3). In this case a preparatory
treatment of the nonlinear system (2.3) is necessary to deal with the linearized system (2.4). The
methods to be discussed in Section 3 allow to split system (2.3) into two systems

ux − u2 = 0 { ∂x, ∂y }

2uy2 − u4 = 0 { ∗ , ∂y }

u 6= 0 u = 0 { ∂x, ∂y }

(where subscripts of u indicate differentiation and where the meaning of the sets on the right will
become clear later). The set of analytic solutions of the original system (2.3) is the disjoint union of
the sets of analytic solutions of the above two systems. Choosing the first system in that splitting,
we define the differential polynomial ring R = Q(

√
2)[u, ux, uy, ux,x, ux,y, uy,y, . . .] and the ideal I

of R which consists of all R-linear combinations of
ux − u2 , ∂x

(
ux − u2) , ∂y

(
ux − u2) , ∂2

x

(
ux − u2) , . . .

uy −
√

2
2 u2 , ∂x

(
uy −

√
2

2 u2
)
, ∂y

(
uy −

√
2

2 u2
)
, ∂2

x

(
uy −

√
2

2 u2
)
, . . .

i.e., which consists of all R-linear combinations of the partial derivatives (of any order) of ux − u2

and uy −
√

2
2 u2. Then I is closed under partial differentiation, R/I is an integral domain, and we

may choose K as the field of fractions of R/I, which is a differential field. In order to deal with
system (2.4), we then define the skew polynomial ring D = K〈∂x, ∂y〉. (Instead of uy −

√
2

2 u2 one
may also choose uy +

√
2

2 u2.)

Remark 2.4. An essential remark for what follows is that the given linear PDEs translate into
linear equations for the Taylor coefficients ci,j of power series solutions

u(x, y) =
∑
i,j≥0

ci,j
(x− x0)i

i!
(y − y0)j

j! , (x0, y0) ∈ C2 ,

by substituting this ansatz into the PDEs and comparing coefficients (and similarly for a different
number of independent variables and unknown functions). However, in order for the resulting
system of linear equations in ci,j to characterize the power series solutions of the PDE system
correctly (around a sufficiently generic point (x0, y0)), an overview of all consequences of the PDE
system needs to be obtained first. Interesting new consequences are usually found by differentiating
two known consequences so that in a suitable linear combination of these derivatives the highest
derivatives of the unknown function cancel.

Example 2.5. Considering again Example 2.3, differentiation of the two PDEs in (2.4) yields

∂2

∂y2

(
∂U

∂x
− 2uU

)
= ∂3U

∂x∂y2 − 2
(
∂2u

∂y2 U + 2 ∂u
∂y

∂U

∂y
+ u

∂2U

∂y2

)
= ∂3U

∂x∂y2 − 2u3 U − 2
√

2u2 ∂U

∂y
− 6u3 U

and
∂

∂x

(
∂2U

∂y2 − 3u2 U

)
= ∂3U

∂x∂y2 − 3
(

2u ∂u
∂x

U + u2 ∂U

∂x

)
= ∂3U

∂x∂y2 − 6u3 U − 6u3 U .
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Hence, we obtain
∂2

∂y2

(
∂U

∂x
− 2uU

)
− ∂

∂x

(
∂2U

∂y2 − 3u2 U

)
= 4u3 U − 2

√
2u2 ∂U

∂y
,

which yields the consequence
∂U

∂y
−
√

2uU = 0 .

This procedure for finding new consequences shall be studied now systematically. We start by
considering the special case of ideals which are generated by monomials.

2.1. Monomial ideals. We denote by ∂1, . . . , ∂n the partial differential operators with respect
to z1, . . . , zn and define the commutative polynomial algebra D = K[∂1, . . . , ∂n] for some field K.
For the sake of simplicity, we assume in this subsection that ∂1, . . . , ∂n act trivially on K, i.e., K
consists of constants, and that the differential equations involve one unknown function only.

The simplest operators in D are given by monomials
∂J := ∂j1

1 . . . ∂jnn , where J = (j1, . . . , jn) ∈ (Z≥0)n .
For µ ⊆ { ∂1, . . . , ∂n } we consider the monoid

Mon(µ) := { ∂J | J = (j1, . . . , jn) ∈ (Z≥0)n, ji = 0 for all i such that ∂i 6∈ µ }
with the usual divisibility relation |, and we let Mon(D) := Mon({ ∂1, . . . , ∂n }). An ideal of D
which is generated by monomials is called a monomial ideal.

Example 2.6 ([Rob14], Ex. 2.1.69). The system of linear PDEs

(2.5) ∂2u

∂x ∂y
= 0 , ∂4u

∂x3 ∂z
= 0 , ∂4u

∂x ∂y2 ∂z
= 0 , ∂5u

∂x2 ∂y ∂z2 = 0

for the unknown function u = u(x, y, z) defines the monomial ideal I of K[∂x, ∂y, ∂z] which is
generated by ∂x∂y, ∂3

x∂z, ∂x∂2
y∂z, ∂2

x∂y∂
2
z . The ideal I encodes all consequences of (2.5).

Remark 2.7. Let the ideal I of D be generated by monomials m1, . . . , mr. Then every monomial
in I is a multiple of some mi. The set of all monomials in I is a multiple-closed subset of Mon(D)
in the sense of the following definition.

Definition 2.8. A set S ⊆ Mon(D) is said to be Mon(µ)-multiple-closed, µ ⊆ { ∂1, . . . , ∂n }, if
ms ∈ S for all m ∈ Mon(µ) , s ∈ S .

Every set G ⊆ Mon(D) satisfying
Mon(µ)G = {mg | m ∈ Mon(µ), g ∈ G } = S

is called a generating set for the Mon(µ)-multiple-closed set S.

Example 2.9. Let D = K[∂1, ∂2] and G := { ∂1∂
2
2 , ∂

3
1∂2, ∂

4
1 }. We consider the Mon(D)-multiple-

closed set S generated by G. If we visualize the monomial ∂i1∂
j
2 as the point (i, j) in the positive

quadrant of a two-dimensional coordinate system, then the set S of monomials can be viewed as
the discrete set of points in the upper-right region in Figure 2.1.

The following combinatorial fact is also referred to as Dickson’s Lemma.

Lemma 2.10. Every Mon(D)-multiple-closed subset of Mon(D) has a finite generating set. Equiv-
alently, every ascending chain of Mon(D)-multiple-closed subsets of Mon(D) terminates.

In other words, every sequence of monomials in which no monomial has a divisor among the
previous ones is finite.
Exercise. Prove Lemma 2.10 by induction on n.

Remark 2.11. Every multiple-closed set has a unique minimal generating set. It is obtained from
any generating set G by removing all elements which have a proper divisor in G.

Example 2.12. The multiple-closed set generated by ∂x∂y, ∂3
x∂z, ∂x∂2

y∂z, ∂2
x∂y∂

2
z in Example 2.6

has minimal generating set { ∂x∂y, ∂3
x∂z }.
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Figure 2.1: Mon(D)-multiple-closed set S in Example 2.9

Figure 2.2: Cone decomposition of S in Example 2.14

We are going to partition multiple-closed sets (and, more importantly, their complements in
Mon(D)) into cones of monomials, where a cone is a Mon(µ)-multiple-closed set generated by one
monomial, for some µ ⊆ { ∂1, . . . , ∂n }. For a set S let P(S) be its power set.

Definition 2.13. (a) A pair (C, µ) ∈ P(Mon(D))× P({ ∂1, . . . , ∂n }) is called a cone if there
exists v ∈ C such that

Mon(µ) v = {mv | m ∈ Mon(µ) } = C .

The elements of µ are called the multiplicative variables, those of µ := { ∂1, . . . , ∂n }\µ the
non-multiplicative variables for (C, µ) (or simply for C, or for v). We often also refer to
the cone C by the pair (v, µ), where v is the generator of C.

(b) Let S ⊆ Mon(D). A cone decomposition of S is a finite set { (m1, µ1), . . . , (mr, µr) } of
cones such that the sets C1, . . . , Cr defined by Ci := Mon(µi)mi satisfy

r⋃
i=1

Ci = S and Ci ∩ Cj = ∅ for all i 6= j .

Example 2.14. A cone decomposition of the multiple-closed set S defined in Example 2.9 is
{ (∂4

1 , {∂1, ∂2}), (∂3
1∂2, {∂2}), (∂2

1∂
2
2 , {∂2}), (∂1∂

2
2 , {∂2}) } ,

which is visualized in Figure 2.2.

Remark 2.15. A cone decomposition of S ⊆ Mon(D) defines a restriction of the usual divisibility
relation of monomials as follows. A monomial m ∈ Mon(D) is divisible by a generator m′ of a
cone (m′, µ) if and only if there exists m′′ ∈ Mon(µ) such that m = m′′m′. The disjointness of
the cone decomposition entails that among cone generators there is at most one divisor.

Given a finite set {m1, . . . ,mr } of monomials, there are many possible ways of how to arrange
sets of multiplicative variables µ1, . . . , µr such that { (m1, µ1), . . . , (mr, µr) } is a set of disjoint
cones. These possibilities are addressed by the notion of involutive division which was introduced
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by V. P. Gerdt, Y. A. Blinkov, A. Y. Zharkov [GB98a, GB98b, ZB96], cf. also [Ape98]. Important
for this exposition is only the Janet division:

Definition 2.16. For a finite subset M of Mon(D) Janet division defines the set µ = µ(m,M) of
multiplicative variables for each m ∈M as follows. If m = ∂i11 . . . ∂inn , then for 1 ≤ k ≤ n

∂k ∈ µ :⇐⇒ ik = max { jk | ∂j1
1 . . . ∂jnn ∈M with j1 = i1, j2 = i2, . . . , jk−1 = ik−1 } .

This definition assumes the ordering ∂1, ∂2, . . . , ∂n of the variables; a different ordering may
be used as well. There are also other common involutive divisions. For instance, J. M. Thomas
[Tho37] proposed another way of defining the multiplicative variables of cones; still another one is
named after J.-F. Pommaret (cf., e.g., [Jan29, no. 58], [Pom94, p. 90], [Sei10]).

Example 2.17. For M = { ∂2
1∂2, ∂

2
1∂3, ∂

2
2∂3, ∂2∂

2
3 } Janet division associates the sets µ(m,M)

of multiplicative variables to the elements m ∈ M as indicated in the following table, where we
replace non-multiplicative variables in the set { ∂1, . . . , ∂n } with the symbol ’∗’.

∂2
1∂2 , {∂1 , ∂2 , ∂3}
∂2

1∂3 , {∂1 , ∗ , ∂3}
∂2

2∂3 , { ∗ , ∂2 , ∂3}
∂2∂

2
3 , { ∗ , ∗ , ∂3}

Definition 2.18. A finite subset M of Mon(D) is said to be Janet complete if⋃
m∈M

Mon(µ(m,M))m =
⋃
m∈M

Mon(D)m,

i.e., if every monomial that is divisible by some monomial inM is obtained by multiplying a certain
m ∈M by multiplicative variables for m only. (The left hand side above is a disjoint union.)

Example 2.19. The set M in Example 2.17 is not Janet complete because, e.g., the monomial
∂1∂

2
2∂3 is not obtained as a multiple of any m ∈M when multiplication is restricted to multiplica-

tive variables for m. By adding this monomial and the monomial ∂1∂2∂
2
3 to M , we obtain the

following Janet complete superset of M in Mon(D).
∂2

1∂2 , {∂1 , ∂2 , ∂3}
∂2

1∂3 , {∂1 , ∗ , ∂3}
∂1∂

2
2 ∂3 , { ∗ , ∂2 , ∂3}

∂1∂2 ∂
2
3 , { ∗ , ∗ , ∂3}

∂2
2∂3 , { ∗ , ∂2 , ∂3}
∂2∂

2
3 , { ∗ , ∗ , ∂3}

Remark 2.20. Every finite subset M of Mon(D) can be enlarged to a finite Janet complete set
by including multiples of certain m ∈M using multiplicative and non-multiplicative variables.

Exercise. Determine a finite Janet complete superset of { ∂3
1∂2, ∂1∂

2
3∂

2
4 , ∂2∂3∂4 }.

Proposition 2.21. Let I be a monomial ideal of D. Let an ordering of ∂1, . . . , ∂n be fixed.
There exists a unique finite Janet complete generating set of monomials for I which is minimal
with respect to set inclusion.

Definition 2.22. Let S ⊆ Mon(D). We refer to the minimal Janet complete superset of S as the
Janet completion of S. Its elements are the generators of cones in a cone decomposition of the
multiple-closed set generated by S. We call this cone decomposition the Janet decomposition of
the multiple-closed set generated by S.

Exercise. Write an algorithm which computes the Janet completion of a finite set of monomials.
Cone decompositions of the complement of a multiple-closed set in Mon(D) which are defined

by Janet division will be referred to as Janet decompositions as well.
Exercise. Write an algorithm which computes a Janet decomposition of the complement of a
multiple-closed set of monomials in Mon(D).

III–7
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Definition 2.23. For any set S ⊆ Mon(D) of monomials, the generalized Hilbert series of S is
the formal power series

HS(∂1, . . . , ∂n) :=
∑
m∈S

m ∈ Z[[∂1, . . . , ∂n]] .

Remark 2.24. The Hilbert series arising in commutative algebra for subsets of homogeneous
polynomials in a polynomial ring with standard grading is obtained from the generalized Hilbert
series as HS(λ, . . . , λ) for an indeterminate λ.

Remark 2.25. Let C = (m,µ) be a cone, where m ∈ Mon(D) and µ ⊆ { ∂1, . . . , ∂n }. We use the
geometric series

1
1− x =

∑
i≥0

xi

to write down the generalized Hilbert series HC(∂1, . . . , ∂n) as follows:

HC(∂1, . . . , ∂n) = m∏
∂∈µ(1− ∂) .

More generally, every decomposition of a Mon(D)-multiple-closed set S into disjoint cones allows
to compute the generalized Hilbert series of S by adding the generalized Hilbert series of the cones.
In an analogous way this applies to the complements of multiple-closed sets.

Example 2.26. The complement in Mon(D) of the multiple-closed set generated by ∂x∂y, ∂3
x∂z,

∂x∂
2
y∂z, ∂2

x∂y∂
2
z in Example 2.6 admits the following Janet decomposition:

1 , { ∗ , ∂y, ∂z }
∂x , { ∗ , ∗ , ∂z }
∂2
x , { ∗ , ∗ , ∂z }
∂3
x , {∂x, ∗ , ∗ }

The corresponding generalized Hilbert series is
1

(1− ∂y)(1− ∂z)
+ ∂x

1− ∂z
+ ∂2

x

1− ∂z
+ ∂3

x

1− ∂x
.

2.2. Janet’s algorithm. Given a system of linear PDEs, Janet’s algorithm computes an equiva-
lent system, called a Janet basis, for which it is a straightforward task to decide whether another
linear PDE is a consequence of the system or not. The answer is obtained by trying to express the
PDE as a linear combination of partial derivatives (of any order) of the Janet basis elements. This
process is based on a multivariate polynomial division for elements of D = K[∂1, . . . , ∂n], which
requires a choice of most significant term in each non-zero polynomial, called leading term.

Suppose that a total ordering > on Mon(D) is chosen which is compatible with multiplication
(i.e., composition of operators). By defining leading terms of PDEs with respect to >, the leading
terms of consequences of one PDE are predictable: the leading term of a derivative of a PDE is
the derivative of the leading term of the PDE.

A total ordering > with the above property also enables us to easily determine the monomials
in ∂1, . . . , ∂n that do not occur in leading terms of consequences of a system of linear PDEs.
Hence, a Janet basis then also allows to determine all analytic solutions (around a sufficiently
generic point). By choosing the total ordering > appropriately, further tasks, e.g., elimination of
variables, can be solved as well.

The methods to be discussed in this section can be applied in a similar way to other types of
linear equations, e.g., difference equations, multidimensional discrete equations, time-delay equa-
tions and other functional equations. The coefficients of these equations may be constant or not,
corresponding to commutative or non-commutative rings of operators, e.g., Ore algebras (cf., e.g.,
[CS98], [CQR05]). For example, singular points of differential equations may be studied in terms
of D-modules [Kas03, Cou95], i.e., modules over Weyl algebras and related rings of differential
operators.
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Last but not least, Janet’s algorithm applies in the same way to systems of polynomial equations,
i.e., equations defining algebraic varieties. Hence, it is an alternative to Buchberger’s algorithm
computing Gröbner bases. In fact, every Janet basis is a Gröbner basis. Generalizations of Gröbner
bases to non-commutative polynomial algebras have been studied since a couple of decades, cf.,
e.g., [KRW90], [Kre93], [Mor94], [Lev05], [GL11]; for rings of differential operators, cf., e.g., [CJ84],
[Gal85], [IP98], [SST00]. Buchberger’s algorithm was adapted to Ore algebras by F. Chyzak
(cf. [Chy98], [CS98], where it is also applied to the study of special functions and combinatorial
sequences). Involutive divisions were studied for the Weyl algebra in [HSS02] and were extended
to non-commutative rings in [EW07].

In this section we confine ourselves to linear PDEs with constant coefficients, but these may
involve q unknown functions. Note that we ignore efficiency issues in favor of a concise formulation
of Janet’s algorithm.

Let D = K[∂1, . . . , ∂n], where K is a field of constants, q ∈ N and e1, . . . , eq the standard basis
vectors of the free (left) D-module D1×q. We define the set of monomials of D1×q to be

Mon(D1×q) :=
q⋃
i=1

Mon(D) ei .

Every p ∈ D1×q has a unique representation

(2.6) p =
q∑

k=1

∑
m∈Mon(D)

ck,mmek

as linear combination of monomials in Mon(D1×q) with coefficients ck,m ∈ K, where only finitely
many ck,m are non-zero.
Definition 2.27. A term ordering > on Mon(D1×q) (or onD1×q) is a total ordering on Mon(D1×q)
which satisfies the following two conditions.

(a) For all 1 ≤ j ≤ n and 1 ≤ k ≤ q we have ∂j ek > ek.
(b) For all m1 ek, m2 el ∈ Mon(D1×q) the following implication holds:

m1 ek > m2 el =⇒ ∂jm1 ek > ∂jm2 el for all j = 1, . . . , n .
Let a term ordering > be fixed. For every p ∈ D1×q \ {0} the greatest monomial, with respect
to >, occurring (with non-zero coefficient) in the representation (2.6) of p is uniquely determined
and is called the leading monomial of p, denoted by lm(p). The coefficient of lm(p) is called the
leading coefficient of p, denoted by lc(p). For any subset S ⊆ D1×q we define

lm(S) := { lm(p) | 0 6= p ∈ S } .
Remark 2.28. Every term ordering on D1×q is a well-ordering, i.e., every descending sequence
of elements of Mon(D1×q) terminates.
Example 2.29. The lexicographical ordering (lex) on Mon(D) (which extends the ordering ∂1 >

∂2 > . . . > ∂n) is defined for monomials m1 = ∂a1
1 . . . ∂ann , m2 = ∂b1

1 . . . ∂bnn ∈ Mon(D) by
m1 > m2 :⇐⇒ m1 6= m2 and aj > bj for j = min { 1 ≤ i ≤ n | ai 6= bi } .

Example 2.30. The degree-reverse lexicographical ordering (degrevlex) on Mon(D) (extending the
ordering ∂1 > ∂2 > . . . > ∂n) is defined for m1 = ∂a1

1 . . . ∂ann , m2 = ∂b1
1 . . . ∂bnn ∈ Mon(D) by

m1 > m2 :⇐⇒


deg(m1) > deg(m2) or(

deg(m1) = deg(m2) and m1 6= m2 and aj < bj

for j = max { 1 ≤ i ≤ n | ai 6= bi }
)
,

where deg refers to the total degree.
Example 2.31. Two ways of extending a given term ordering >1 on Mon(D) to Mon(D1×q)
for q > 1 are often used. The term-over-position ordering (extending >1 and the total ordering
e1 > e2 > . . . > eq of the standard basis vectors) is defined for m1, m2 ∈ Mon(D) by

m1 ei > m2 ej :⇐⇒ m1 >1 m2 or (m1 = m2 and i < j) .
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Accordingly, the position-over-term ordering (extending >1 and e1 > e2 > . . . > eq) is defined by
m1 ei > m2 ej :⇐⇒ i < j or (i = j and m1 >1 m2) .

In what follows, we assume that a term ordering > on D1×q is fixed.
Let M be a submodule of D1×q. Note that lm(M) is a Mon(D)-multiple-closed set. More

precisely, for each k ∈ {1, . . . , q}, the set
{m ∈ Mon(D) | mek ∈ lm(M) }

is Mon(D)-multiple-closed as discussed in Section 2.1.
Starting with a finite generating set L of M , Janet’s algorithm possibly removes elements from

L and inserts new elements of M into L repeatedly in order to finally achieve that the Mon(D)-
multiple-closed set generated by lm(L) equals lm(M). An element p ∈ L is removed if it is reduced
to zero by subtraction of suitable multiples of other elements of L.

We denote by D〈L 〉 the submodule of D1×q generated by L ⊆ D1×q.
For G ⊆ Mon(D1×q) we denote by [G ] the Mon(D)-multiple-closed set generated by G. If

G = {m1, . . . ,mr }, then we also write [m1, . . . ,mr ] for [G ].

Definition 2.32. Let T = { (b1, µ1), . . . , (bt, µt) }, where bi ∈ D1×q \ {0} and µi ⊆ { ∂1, . . . , ∂n }.
(a) The set T is Janet complete if { lm(b1), . . . , lm(bt) } equals its Janet completion and, for

each i ∈ {1, . . . , t}, µi is the set of multiplicative variables of the cone with generator lm(bi)
in the Janet decomposition { (lm(b1), µ1), . . . , (lm(bt), µt) } of [ lm(b1), . . . , lm(bt) ].

(b) An element p ∈ D1×q is Janet reducible modulo T if there exist (b, µ) ∈ T and a monomial
m ∈ Mon(D1×q) which occurs in p such that m ∈ Mon(µ) lm(b). In this case, (b, µ) is
called a Janet divisor of p. If p is not Janet reducible modulo T , then p is also said to be
Janet reduced modulo T .

The following algorithm subtracts suitable multiples of Janet divisors from a given element
p ∈ D1×q as long as a term in p is Janet reducible modulo T .

Algorithm 2.33 (Janet-reduce).
Input: p ∈ D1×q, T = { (b1, µ1), . . . , (bt, µt) }, and a term ordering > on D1×q, where T is Janet

complete (with respect to >, cf. Definition 2.32)
Output: r ∈ D1×q such that

r + D〈 b1, . . . , bt 〉 = p+ D〈 b1, . . . , bt 〉

and r is Janet reduced modulo T
Algorithm:
1: p′ ← p; r ← 0
2: while p′ 6= 0 do
3: if ∃ (b, µ) ∈ T such that lm(p′) ∈ Mon(µ) lm(b) then // (b, µ) is a Janet divisor of p′

4: p′ ← p′ − lc(p′)
lc(b)

lm(p′)
lm(b) b

5: else
6: subtract the term of p′ with monomial lm(p′) from p′ and add it to r
7: end if
8: end while
9: return r

Remark 2.34. Algorithm 2.33 terminates because, as long as p′ is non-zero, the leading monomial
of p′ decreases with respect to the term ordering >, which is a well-ordering. Its correctness is
clear. The result r is uniquely determined for the given input because every monomial has at most
one Janet divisor in T , and also the course of Algorithm 2.33 is uniquely determined as opposed to
reduction procedures which apply multivariate polynomial division without distinguishing between
multiplicative and non-multiplicative variables.
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Remark 2.35. Let p1, p2 ∈ D1×q and T be as in the input of Algorithm 2.33. In general, the
equality p1 +D〈 b1, . . . , bt 〉 = p2 +D〈 b1, . . . , bt 〉 does not imply that the results of applying Janet-
reduce to p1 and p2, respectively, are equal. However, according to Theorem 2.39 (d) below, if T
is a Janet basis, then the result of Janet-reduce constitutes a unique representative for every coset
in D1×q/D〈 b1, . . . , bt 〉. It is called the Janet normal form of p1 (or p2) modulo T .

Definition 2.36. Let T = { (b1, µ1), . . . , (bt, µt) } be Janet complete (as in Definition 2.32 (a)).
We write NF(p, T,>) for the result of Algorithm 2.33 (Janet-reduce) applied to p, T , >. The set
T is said to be passive if
(2.7) NF(v · bi, T,>) = 0 for all v ∈ µi, i = 1, . . . , t .
In this case T is also called a Janet basis for D〈 b1, . . . , bt 〉 (with respect to >), and { b1, . . . , bt }
is often referred to as a Janet basis for D〈 b1, . . . , bt 〉 as well.

Remark 2.37. LetM be a submodule of D1×q. By applying Janet’s algorithm to a finite generat-
ing set L of M , an ascending chain of multiple-closed subsets of lm(M) is constructed. This chain
terminates by Lemma 2.10. In each round, a Janet decomposition is computed for the current
multiple-closed set generated by the leading monomials of a generating set for M . In order to
obtain the minimal Janet complete set of monomials, the generating set for M is first turned into
an auto-reduced one, i.e., no leading monomial of a generator divides (in the conventional sense)
the leading monomial of another generator.

Let M = D〈 b1, . . . , bt 〉. Then every element of M is a D-linear combination of b1, . . . , bt.
Suppose that T is passive. Each summand cimi bi in such a linear combination, where ci ∈ K
and where mi ∈ Mon(D) involves some variable that is non-multiplicative for bi, can be replaced
with a K-linear combination of elements in Mon(µ1) b1, . . . , Mon(µt) bt. Due to the passivity
condition (2.7), this can be achieved by applying successively Algorithm 2.33 (Janet-reduce) to
terms involving only one non-multiplicative variable. This substitution process should deal with the
largest term with respect to > first. Elimination of all non-multiplicative variables demonstrates
that the leading monomial of every p ∈ M \ {0} has a Janet divisor in T . We conclude that
passivity of the Janet complete set T is equivalent to [ lm(b1), . . . , lm(bt) ] = lm(M).

Recall that for any set S we denote by P(S) the power set of S.

Algorithm 2.38 (JanetBasis).
Input: A finite set L ⊆ D1×q, a term ordering > on D1×q, and an ordering of ∂1, . . . , ∂n for

Janet division
Output: A finite subset J of D1×q × P({ ∂1, . . . , ∂n }) such that D〈 p | (p, µ) ∈ J 〉 = D〈L 〉 (and

J = ∅ if and only if D〈L 〉 = {0})
Algorithm:
1: G← L

2: repeat
3: G← Auto-reduce(G, >) // cf. Remark 2.37
4: J ← Janet-decompose(G) // cf. second exercise on p. 7
5: P ← {NF(v · p, J,>) | (p, µ) ∈ J, v ∈ µ } // cf. Algorithm 2.33
6: G← { p | (p, µ) ∈ J } ∪ P
7: until P ⊆ {0}
8: return J

Theorem 2.39 ([Rob14], Thm. 2.1.43).
(a) Algorithm 2.38 terminates and is correct.
(b) A K-basis of D〈L 〉 is given by

⊎
(p,µ)∈J

Mon(µ)p, where J is the result of Algorithm 2.38.

In particular, every r ∈ D〈L 〉 has a unique representation

r =
∑

(p,µ)∈J

c(p,µ) p ,
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where each c(p,µ) ∈ D is a K-linear combination of elements in Mon(µ).
(c) The cosets in D1×q/D〈L 〉 with representatives in

Mon(D1×q) \ [ lm(p) | (p, µ) ∈ J ]
form a K-basis of D1×q/D〈L 〉.

(d) For every r1, r2 ∈ D1×q the following equivalence holds.
r1 + D〈L 〉 = r2 + D〈L 〉 ⇐⇒ NF(r1, J,>) = NF(r2, J,>) .

We present a small example illustrating the idea of Janet’s algorithm.

Example 2.40. Let D = K[∂1, ∂2] be the commutative polynomial algebra in ∂1, ∂2 over a field
K. We choose the degree-reverse lexicographical ordering on Mon(D) satisfying ∂1 > ∂2 (cf.
Example 2.30). Let the ideal I of D be generated by

p1 := ∂2
1 − ∂2 , p2 := ∂1∂2 − ∂2 .

Using the ordering ∂1, ∂2 of the variables for Janet division, the Janet decomposition of the
multiple-closed set which is generated by the underlined leading monomials of p1 and p2 is

{ (∂2
1 , {∂1, ∂2}), (∂1∂2, {∂2}) } .

This result indicates that we need to check whether f := ∂1p2 can be written as
(2.8) f = c1 (∂2

1 − ∂2) + c2 (∂1∂2 − ∂2) , c1 ∈ K[∂1, ∂2] , c2 ∈ K[∂2] .
The monomials appearing in f = ∂2

1∂2 − ∂1∂2 ∈ I lie in the cones (∂2
1 , {∂1, ∂2}) and (∂1∂2, {∂2}),

respectively. Reduction yields p3 := ∂2
2 − ∂2 ∈ I, which does not have a representation as in (2.8).

So, we include p3 in our list of generators, and for this example, we already arrive at the (minimal)
Janet basis { (p1, {∂1, ∂2}), (p2, {∂2}), (p3, {∂2}) } for I.

Remark 2.41. The K-vector space F := homK(D,K) is a (left) D-module with action
D ×F −→ F : (d, f) 7−→ (a 7→ f(a · d)) ,

and the following K-bilinear form is non-degenerate in both arguments:
(2.9) ( , ) : D ×F −→ K : (d, f) 7−→ f(d) .
Hence, D and F are dual to each other. The linear map D → D defined by right multiplication
by d and the linear map F → F given by left multiplication by d are adjoint to each other:
(2.10) (a · d, f) = f(a · d) = (d · f)(a) = (a, d · f), a ∈ D, f ∈ F .
Since every homomorphism f ∈ F is uniquely determined by its values for the elements of the
K-basis Mon(D) of D, we can write f in a unique way as a (not necessarily finite) formal sum

(2.11)
∑

m∈Mon(D)

(m, f)m.

Due to (2.10), for every d ∈ D the representation of d · f can be obtained from

(2.12)
∑

m∈Mon(D)

(m, d · f)m =
∑

m∈Mon(D)

(m · d, f)m.

By writing the monomials in the sum (2.11) in indeterminates z1, . . . , zn, we identify F with the
K-algebraK[[z1, . . . , zn]] of formal power series. It follows from (2.12) that the (left) action on F of
any monomial in D effects a shift of the coefficients of the power series according to the exponent
vector of the monomial, which is the same action as the one defined by partial differentiation.
Therefore, the K-vector space bases (zα/α! | α ∈ (Z≥0)n) and (∂β | β ∈ (Z≥0)n) are dual to each
other with respect to the pairing (2.9), i.e.,(

∂β ,
∑
α∈(Z≥0)n cα

zα

α!

)
= cβ , β ∈ (Z≥0)n , cα ∈ K , α! := α1! · . . . · αn! .

Suppose that a system of (homogeneous) linear PDEs with constant coefficients for one unknown
function of n arguments is given. We compute a Janet basis J for the ideal of D which is generated
by the left hand sides p of these equations with respect to the term ordering >. The differential
equations are considered as linear equations for (∂β , f), β ∈ (Z≥0)n, where f ∈ F is a formal power
series solution, and using the term ordering >, we may solve each of these equations for (lm(p), f).
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Then Janet’s algorithm partitions Mon(D) into a set of monomials m for which (m, f) ∈ K can be
chosen arbitrarily and a set S of monomials for which (lm(p), f) ∈ K is uniquely determined by
these choices. The latter set is the multiple-closed subset S := [ lm(p) | (p, µ) ∈ J ] of Mon(D). In
particular, the K-dimension of the space of formal power series solutions, if finite, can be computed
as the number of monomials in the complement C of S in Mon(D). In fact, the generalized Hilbert
series HC(∂1, . . . , ∂n) of C enumerates a basis for the Taylor coefficients (∂β , f) of f whose values
can be assigned freely.

M. Janet calls the monomials ∂β in Mon(D)\S parametric derivatives because the corresponding
Taylor coefficients (∂β , f) of a formal power series solution f can be chosen arbitrarily. The
monomials in S are called principal derivatives [Jan29, e.g., no. 22, no. 38]. The Taylor coefficients
(∂β , f) which correspond to principal derivatives ∂β are uniquely determined byK-linear equations
in terms of the Taylor coefficients of parametric derivatives. Of course, the extension of this method
of determining the formal power series solutions of a system of linear partial differential equations
is extended to the case of more than one unknown function (e.g., q unknown functions) in a
straightforward way by using submodules of D1×q instead of ideals of D.

Note that convergence of series solutions is to be investigated separately.

For a treatment of partial difference equations that is similar to Remark 2.41, we refer to [OP01].
Algorithm 2.38 is applicable in an analogous way to systems of linear partial difference equations,
where the differential operators ∂1, . . . , ∂n are replaced by shift operators. For algorithmic details
and applications we refer, e.g., to [GR06], [GR10], [GR12].

Remark 2.42. The previous remark also applies to linear systems of partial differential equa-
tions whose coefficients are rational functions in the independent variables z1, . . . , zn, i.e. D =
K[∂1, . . . , ∂n] is replaced by Bn(K) := K(z1, . . . , zn)〈∂1, . . . , ∂n〉. Of course, in this case a formal
power series solution is only well-defined if the left submodule M of Bn(K)1×q which represents
the left hand sides of the equations is also a left submodule of A[∂1, . . . , ∂n]1×q, where A is a
K-subalgebra of Bn(K) whose elements do not have a pole in 0 ∈ Kn and the Janet basis for M
is computed within A[∂1, . . . , ∂n]1×q. In other words, a formal power series solution is only well-
defined if 0 ∈ Kn is not a zero of any denominator occurring in the course of Janet’s algorithm.

Example 2.43. [Jan29, no. 23] Let us consider the heat equation

(2.13) ∂u

∂t
− ∂2u

∂x2 = 0

for an unknown real analytic function u of t and x. The corresponding operator is p := ∂t − ∂2
x ∈

D := K[∂t, ∂x], where K = Q or R. Choosing a degree-reverse lexicographical term ordering on
D, the leading monomial of p is ∂2

x. The polynomial p forms a Janet basis for the ideal of D it
generates, and the parametric derivatives are given by ∂it , ∂

j
t ∂x, i, j ∈ Z≥0. Hence, any choice of

formal power series in t for u(t, 0) and ∂u
∂x (t, 0) uniquely determines a formal power series solution

u to (2.13). In this case, every choice of convergent power series yields a convergent series solution
u. On the other hand, using the lexicographical term ordering extending t > x, the parametric
derivatives are given by ∂ix, i ∈ Z≥0. Now, the choice u(0, x) =

∑
i≥0 x

i determines a divergent
series solution u.

Example 2.44. The (minimal) Janet basis for the system of linear PDEs in Example 2.6 is

∂2u

∂x ∂y
= 0 , { ∗ , ∂y, ∂z }

∂3u

∂x2 ∂y
= 0 , { ∗ , ∂y, ∂z }

∂4u

∂x3 ∂z
= 0 , {∂x, ∗ , ∂z }

∂4u

∂x3 ∂y
= 0 , {∂x, ∂y, ∂z }
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A Janet decomposition of the set of parametric derivatives is (cf. also Example 2.26)

1 , { ∗ , ∂y, ∂z }
∂x , { ∗ , ∗ , ∂z }
∂2
x , { ∗ , ∗ , ∂z }
∂3
x , {∂x, ∗ , ∗ }

The corresponding generalized Hilbert series is

1
(1− ∂y)(1− ∂z)

+ ∂x
1− ∂z

+ ∂2
x

1− ∂z
+ ∂3

x

1− ∂x
.

Accordingly, a formal power series solution u of (2.5) is uniquely determined as

u(x, y, z) = f0(y, z) + x f1(z) + x2 f2(z) + x3 f3(x)

by any choice of formal power series f0, f1, f2, f3 of the indicated variables.

3. Systems of nonlinear differential equations

The methods to be developed in this section allow to solve tasks (a), (b), (c) as stated in the
Introduction for systems of partial differential equations (PDEs) that are expressed by polynomials
in the unknown functions and their derivatives.

A system of partial differential equations and inequations (or simply a differential system) S is
given by

(3.1) p1 = 0 , p2 = 0 , . . . , ps = 0 , q1 6= 0 , q2 6= 0 , . . . , qt 6= 0 ,

where p1, . . . , ps and q1, . . . , qt are polynomials in unknown functions u1, . . . , um of independent
variables z1, . . . , zn and their partial derivatives (of arbitrary order), and s, t ∈ Z≥0.

Let Ω be an open and connected subset of Cn with coordinates z1, z2, . . . , zn. Then the solution
set of S on Ω is

SolΩ(S) := { f = (f1, . . . , fm) | fk : Ω→ C analytic, k = 1, . . . ,m,
pi(f) = 0, qj(f) 6= 0, i = 1, . . . , s, j = 1, . . . , t } ,

where pi(f) and qj(f) are obtained from pi and qj , respectively, by substituting fk for uk and the
partial derivatives of fk for the corresponding jet variables in uk.

Example 3.1. The following differential system for one unknown function u of independent vari-
ables t and x is a combination of the Korteweg-de Vries equation (KdV, [BC80]) and a (generalized)
Wronskian determinant: 

∂u

∂t
− 6u ∂u

∂x
+ ∂3u

∂x3 = 0 ,

u
∂2u

∂t ∂x
− ∂u

∂t

∂u

∂x
= 0 .

If we denote partial derivatives by (repeated) indices, we may also write it as{
ut − 6uux + ux,x,x = 0 ,

u ut,x − ut ux = 0 .

Example 3.2. The following Navier-Stokes equations describe the flow of an incompressible fluid,
where x, y, z are the spatial coordinates, t is the time coordinate, ρ the constant density, p =
p(x, y, z, t) the pressure, (v1, v2, v3) = (v1(x, y, z, t), v2(x, y, z, t), v3(x, y, z, t)) the velocity vector,
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(g1, g2, g3) the gravitational acceleration and µ is the dynamic viscosity of the fluid [LL87, p. 45]:

ρ

(
∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
+ v3

∂v1

∂z

)
= −∂p

∂x
+ µ

(
∂2v1

∂x2 + ∂2v1

∂y2 + ∂2v1

∂z2

)
+ ρ g1 ,

ρ

(
∂v2

∂t
+ v1

∂v2

∂x
+ v2

∂v2

∂y
+ v3

∂v2

∂z

)
= −∂p

∂y
+ µ

(
∂2v2

∂x2 + ∂2v2

∂y2 + ∂2v2

∂z2

)
+ ρ g2 ,

ρ

(
∂v3

∂t
+ v1

∂v3

∂x
+ v2

∂v3

∂y
+ v3

∂v3

∂z

)
= −∂p

∂z
+ µ

(
∂2v3

∂x2 + ∂2v3

∂y2 + ∂2v3

∂z2

)
+ ρ g3 ,

∂v1

∂x
+ ∂v2

∂y
+ ∂v3

∂z
= 0 .

The consequences of (3.1) are the partial differential equations for u1, . . . , um which are obtained
in a finite number steps from the following rules:

(a) The given equations p1 = 0, p2 = 0, . . . , ps = 0 are consequences of (3.1).
(b) If p = 0 is a consequence, then any partial derivative of p = 0 is a consequence.
(c) If p · q = 0 is a consequence and q is a factor of some qi, then p = 0 is a consequence.
(d) If p = 0 and r = 0 are consequences, then a p+b r = 0 are consequences for all polynomials

a and b in u1, . . . , um and their partial derivatives (of all orders).
Since this setup allows differential equations p = 0 to be differentiated, we are going to work

with a polynomial ring in u1, . . . , um which admits these differentiations.

Definition 3.3. A differential ring R with commuting derivations δ1, . . . , δn is a commutative
ring R endowed with maps δi : R→ R, satisfying

δi(r1 + r2) = δi(r1) + δi(r2) , δi(r1 r2) = δi(r1) r2 + r1 δi(r2) for all r1, r2 ∈ R ,
i = 1, . . . , n, and δi ◦ δj = δj ◦ δi for all 1 ≤ i, j ≤ n. A differential ring which is a field is called a
differential field, and similarly for a differential algebra over a differential field.

In what follows we only consider differential fields K of characteristic zero. Let ∂1, . . . , ∂n be
the derivations of K.

Definition 3.4. The differential polynomial ring K{u1, . . . , um} in the differential indeterminates
u1, . . . , um is the commutative polynomial algebra K[(uk)J | 1 ≤ k ≤ m, J ∈ (Z≥0)n] with
infinitely many, algebraically independent indeterminates (uk)J , also called jet variables, which
represent the partial derivatives

∂J1+...+JnUk

∂zJ1
1 . . . ∂zJnn

, k = 1, . . . ,m , J ∈ (Z≥0)n ,

of smooth functions U1, . . . , Um of independent variables z1, . . . , zn. We identify uk with (uk)(0,...,0)
and we also employ the notation involving z1, . . . , zn as repeated indices as in Example 3.1. The
ring K{u1, . . . , um} is considered as a differential ring with commuting derivations δ1, . . . , δn
defined by extending

δi (uk)J := (uk)J+1i , i = 1, . . . , n , k = 1, . . . ,m , J ∈ (Z≥0)n ,
additively, respecting the product rule of differentiation, and restricting to the derivation ∂i on
K. Here 1i denotes the multi-index (0, . . . , 0, 1, 0, . . . , 0) of length n with 1 at position i. More
generally, the differential polynomial ring may be constructed with coefficients in a differential ring
rather than in a differential field in the same way.

Recall that we consider an open and connected subset Ω of Cn. The set of (complex) mero-
morphic functions on Ω form a field K, and together with the partial differential operators with
respect to z1, . . . , zn the field K is a differential field.

A suitable choice of differential polynomial ring R = K{u1, . . . , um} allows to consider the left
hand sides p1, . . . , ps, q1, . . . , qt in the system of nonlinear PDEs (3.1) as elements of R. Moreover,
the left hand sides of all consequences of the system are elements of R as well. In fact, we may
consider the differential ideal I of R which is generated by p1, . . . , ps, i.e., the smallest ideal of R
which contains p1, . . . , ps and all their derivatives (of all orders). This is only a first step, because
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in general I does not contain all consequences of (3.1). Before we study these ideas further, we
first deal with algebraic systems (e.g., in (uk)J , where 1 ≤ k ≤ m, J ∈ (Z≥0)n).

3.1. Thomas decomposition of algebraic systems. In this subsection let K be a field of
characteristic zero andR = K[x1, . . . , xn] the commutative polynomial algebra with indeterminates
x1, . . . , xn over K. We denote by K an algebraic closure of K.

Definition 3.5. An algebraic system S, defined over R, is given by finitely many equations and
inequations

(3.2) p1 = 0 , p2 = 0 , . . . , ps = 0 , q1 6= 0 , q2 6= 0 , . . . , qt 6= 0 ,

where p1, . . . , ps, q1, . . . , qt ∈ R and s, t ∈ Z≥0. The solution set of S in Kn is

SolK(S) := { a ∈ Kn | pi(a) = 0 and qj(a) 6= 0 for all 1 ≤ i ≤ s, 1 ≤ j ≤ t } .

We fix a total ordering > on the set {x1, . . . , xn} allowing us to consider every non-constant
element p of R as a univariate polynomial in the greatest variable with respect to > which occurs
in p, with coefficients which are themselves univariate polynomials in lower ranked variables, etc.
Without loss of generality we may assume that

x1 > x2 > . . . > xn .

The choice of > corresponds to a choice of projections

π1 : Kn −→ K
n−1 : (a1, a2, . . . , an) 7−→ (a2, a3, a4, . . . , an) ,

π2 : Kn −→ K
n−2 : (a1, a2, . . . , an) 7−→ (a3, a4, . . . , an) ,

...
...

πn−1 : Kn −→ K : (a1, a2, . . . , an) 7−→ an .

According to this choice, the recursive representation of polynomials is motivated by considering
the (k − 1)-st projection πk−1(SolK(S)) of the solution set as fibered over the k-th projection
πk(SolK(S)), for k = 1, . . . , n − 1, where we define π0 := idKn (cf. also [Ple09a]). The purpose
of a Thomas decomposition of SolK(S), to be defined below, is to clarify this fibration structure.
The solution set SolK(S) is partitioned into subsets SolK(S1), . . . , SolK(Sr) in such a way that,
for each i = 1, . . . , r and k = 1, . . . , n − 1, the fiber cardinality |π−1

k ({ a })| does not depend on
the choice of a ∈ πk(SolK(Si)). In terms of the defining equations and inequations in (3.2), the
fundamental obstructions to this uniform behavior are zeros of the leading coefficients of pi or qj
and zeros of pi or qj of multiplicity greater than one.

Definition 3.6. Let p ∈ R \K.

(a) The greatest indeterminate with respect to > which occurs in p is referred to as the leader
of p and is denoted by ld(p).

(b) For v = ld(p) we denote by degv(p) the degree of p in v.
(c) The coefficient of the highest power of ld(p) occurring in p is called the initial of p and is

denoted by init(p).
(d) The discriminant of p is defined as

disc(p) := (−1)d(d−1)/2 res
(
p,

∂p

∂ ld(p) , ld(p)
)
/ init(p) , d = degld(p)(p) ,

where res(p, q, v) is the resultant of p and q with respect to the variable v.
(Note that disc(p) is a polynomial because init(p) divides res(p, ∂p/∂ ld(p), ld(p)): for p =
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cd v
d + cd−1 v

d−1 + . . .+ c1 v + c0 the (2d− 1)× (2d− 1) matrix in

res(p, ∂p/∂ ld(p), ld(p)) := det



cd . . . . . . c1 c0
cd . . . . . . c1 c0

. . . . . .
cd . . . . . . c1 c0

d cd . . . 2 c2 c1
d cd . . . 2 c2 c1

. . . . . .
d cd . . . 2 c2 c1

d cd . . . 2 c2 c1


has a column all of whose entries are divisible by cd = init(p).)

Both init(p) and disc(p) are elements of the polynomial algebra K[x | ld(p) > x]. The zeros of a
univariate polynomial with multiplicity greater than one are the common zeros of the polynomial
and its derivative. The solutions of disc(p) = 0 in K

n−k, where ld(p) = xk, are therefore those
tuples (ak+1, ak+2, . . . , an) for which the substitution

xk+1 = ak+1 , xk+2 = ak+2 , . . . , xn = an

in p results in a univariate polynomial with a zero of multiplicity greater than one.

Definition 3.7. An algebraic system S, defined over R, as in (3.2) is said to be simple (with
respect to >) if the following three conditions hold.

(a) For all i = 1, . . . , s and j = 1, . . . , t we have pi 6∈ K and qj 6∈ K.
(b) The leaders of the left hand sides of the equations and inequations in S are pairwise distinct,

i.e., |{ ld(p1), . . . , ld(ps), ld(q1), . . . , ld(qt) }| = s+ t.
(c) For every r ∈ { p1, . . . , ps, q1, . . . , qt }, if ld(r) = xk, then neither the equation init(r) = 0

nor the equation disc(r) = 0 has a solution (ak+1, ak+2, . . . , an) in πk(SolK(S)).

Subsets of non-constant polynomials in R with pairwise distinct leaders (i.e., satisfying (a) and
(b)) are also referred to as triangular sets (cf., e.g., [ALMM99], [Hub03a, Hub03b], [Wan01]).

Remark 3.8. A simple algebraic system S admits the following solution procedure, which also
shows that its solution set is not empty. Let S<k be the subset of S consisting of the equations
p = 0 and inequations q 6= 0 with xk > ld(p) and xk > ld(q). The fibration structure implied by
(c) ensures that, for every k = 1, . . . , n− 1, every solution

(ak+1, ak+2, . . . , an) ∈ Kn−k

in πk(SolK(S)) = πk(SolK(S<k)) can be extended to a solution

(ak, ak+1, . . . , an) ∈ Kn−(k−1)

in πk−1(SolK(S)). If S contains an equation p = 0 with leader xk, then there exist exactly
degxk(p) such extensions (because zeros with multiplicity greater than one are excluded by the
non-vanishing discriminant). If S contains an inequation q 6= 0 with leader xk, all ak ∈ K except
degxk(q) elements define a tuple (ak, ak+1, . . . , an) as above. If no equation and no inequation in
S has leader xk, then ak ∈ K can be chosen arbitrarily.

Definition 3.9. Let S be an algebraic system, defined over R. A Thomas decomposition of S (or
SolK(S)) with respect to > is a collection of finitely many algebraic systems S1, . . . , Sr, each of
which is defined over R and is simple, such that SolK(S) is the disjoint union of the solution sets
SolK(S1), . . . , SolK(Sr).

We outline a method for computing a Thomas decomposition of algebraic systems.

Remark 3.10. Given S as in (3.2) and a total ordering > on {x1, . . . , xn}, a Thomas decompo-
sition of S with respect to > can be constructed by combining Euclid’s algorithm with a splitting
strategy.
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First of all, if S contains an equation c = 0 with 0 6= c ∈ K or the inequation 0 6= 0, then S is
discarded because it has no solutions. Moreover, from now on the equation 0 = 0 and inequations
c 6= 0 with 0 6= c ∈ K are supposed to be removed from S.

An elementary step of the algorithm applies a pseudo-division to a pair p1, p2 of non-constant
polynomials in R with the same leader xk and degxk(p1) ≥ degxk(p2). The result is a pseudo-re-
mainder

(3.3) r = c1 · p1 − c2 · p2 , where c1, c2 ∈ R ,

and r is constant or has leader less than xk or has leader xk and degxk(r) < degxk(p1). Since
the coefficients of p1 and p2 are polynomials in lower ranked variables, multiplication of p1 by a
non-constant polynomial c1 may be necessary in general to perform the reduction in R (and not
in its field of fractions). Choosing c1 as a suitable power of init(p2) always achieves this.

In order to turn S into a triangular set, the algorithm deals with three kinds of subsets of S
of cardinality two. Firstly, each pair of equations p1 = 0, p2 = 0 in S with ld(p1) = ld(p2) is
replaced with the single equation r = 0, where r is the result of applying Euclid’s algorithm to p1
and p2, considered as univariate polynomials in their leader, using the above pseudo-division. (If
this computation was stable under substitution of values for lower ranked variables in p1 and p2,
then r would be the greatest common divisor of the specialized polynomials.)

The solution set of the system is supposed not to change, when the equation p1 = 0 is replaced
with the equation r = 0 given by the pseudo-reduction (3.3). Therefore, we assume that the
polynomial c1, and hence init(p2), does not vanish on the solution set of the system. In order to
ensure this condition, a preparatory step splits the system into two, if necessary, and adds the
inequation init(p2) 6= 0 to one of them and the equation init(p2) = 0 to the other. The algorithm
then deals with both systems separately. These case distinctions also allow to arrange for the part
of condition (c) in Definition 3.7 which concerns initials.

Secondly, let p = 0, q 6= 0 be in S with ld(p) = ld(q) = xk. If degxk(p) ≤ degxk(q), then
q 6= 0 is replaced with r 6= 0, where r is the result of applying the pseudo-division (3.3) to q
and p. Otherwise, Euclid’s algorithm is applied to p and q, keeping track of the coefficients used
for the reductions as in (3.3). Given the result r, the system is then split into two, adding the
conditions r 6= 0 and r = 0, respectively. The inequation q 6= 0 is removed from the first new
system, because p = 0 and q 6= 0 have no common solution in that case. The assumption r = 0
and the bookkeeping allow to divide p by the common factor of p and q (modulo left hand sides
of equations with smaller leader). The left hand side of p = 0 is replaced with that quotient in
the second new system. Some particular cases admit an accelerated treatment. For instance, if p
divides q, then the solution set of S is empty and S is discarded.

Thirdly, for a pair q1 6= 0, q2 6= 0 in S with ld(q1) = ld(q2), Euclid’s algorithm is applied to q1
and q2 in the same way as above. Keeping track of the coefficients used in intermediate steps allows
to determine the least common multiple m of q1 and q2, which again depends on distinguishing
the cases whether the result of Euclid’s algorithm vanishes or not. The pair q1 6= 0, q2 6= 0 is then
replaced with the single inequation m 6= 0.

The part of condition (c) in Definition 3.7 regarding discriminants is taken care of by applying
Euclid’s algorithm as above to p and ∂p/∂ ld(p), where p is the left hand side of an equation or
inequation. Bookkeeping allows to determine the square-free part of p, which depends again on
case distinctions.

Expressions tend to grow very quickly when performing these reductions, so that an appropriate
strategy is essential for dealing with non-trivial systems. Apart from dividing by the content (in
K) of polynomials, in intermediate steps of Euclid’s algorithm the coefficients should be reduced
modulo equations in the system with lower ranked leaders. In practice, subresultant computations
(cf., e.g., [Mis93]) allow to diminish the growth of coefficients significantly.

Termination of the procedure sketched above depends on the organization of its steps. One pos-
sible strategy is to maintain an intermediate triangular set, reduce new equations and inequations
modulo the equations in the triangular set, and select among these results the one with smallest
leader and least degree, preferably an equation, for insertion into the triangular set. If the set
already contains an equation or inequation with the same leader, then the pair is treated as dis-
cussed above. Since equations are replaced with equations of smaller degree and inequations are
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(x, y)

t

Figure 3.1: Stereographic projection from a circle

replaced with equations if possible or with the least common multiple of inequations, this strategy
terminates after finitely many steps.

For more details on the algebraic part of Thomas’ algorithm, we refer to [BGL+12], [Bäc14],
and [Rob14, Subsect. 2.2.1].

An implementation of Thomas’ algorithm for algebraic systems was developed by T. Bächler at
RWTH Aachen University as Maple package AlgebraicThomas [BLH].

In what follows, variables are underlined to emphasize that they are leaders of polynomials with
respect to the fixed total ordering >.

Example 3.11. Let us compute a Thomas decomposition of the algebraic system

x2 + y2 − 1 = 0

consisting of one equation, defined over R = Q[x, y], with respect to x > y. First we set p1 :=
x2 + y2 − 1. Then we have ld(p1) = x and init(p1) = 1 and

disc(p1) = −4 y2 + 4 .

We distinguish the cases whether or not p1 = 0 has a solution which is also a zero of disc(p1), or
equivalently, of y2− 1. In other words, we replace the original algebraic system with two algebraic
systems which are obtained by adding the inequation y2 − 1 6= 0 or the equation y2 − 1 = 0.
The first system is readily seen to be simple, whereas the second one is transformed into a simple
system by taking the difference of the two equations and computing a square-free part. Clearly,
the solution sets of the two resulting simple systems form a partition of the solution set of p1 = 0.
We obtain the Thomas decomposition

x2 + y2 − 1 = 0

y2 − 1 6= 0

x = 0

y2 − 1 = 0

In this example, all points of SolK({ p1 = 0 }) for which the projection π1 onto the y-axis has
fibers of an exceptional cardinality have real coordinates, and the significance of the above case
distinction can be confirmed graphically.

As a further illustration let us augment the original system by the equation which expresses the
coordinate t of the point of intersection of the line through the two points (0, 1) and (x, y) on the
circle with the x-axis (stereographic projection, cf. Figure 3.1): x2 + y2 − 1 = 0

(1− y) t− x = 0

A Thomas decomposition with respect to the ordering x > y > t is obtained as follows. We set
p2 := x+ t y − t. Since ld(p1) = ld(p2), we apply polynomial division:

p1 − (x− t y + t) p2 = (1 + t2) y2 − 2 t2 y + t2 − 1 = (y − 1) ((1 + t2) y − t2 + 1) .

Replacing p1 with the remainder of this division does not alter the solution set of the algebraic
system. It is convenient (but not necessary) to split the system into two systems according to the
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factorization of the remainder:
x+ t y − t = 0

(1 + t2) y − t2 + 1 = 0

y − 1 6= 0


x+ t y − t = 0

y − 1 = 0
Another polynomial division reveals that the equation and the inequation with leader y in the first
system have no common solutions. Hence, the inequation can be omitted from that system. For
the investigation of the initial of the equation we note that the assumption 1 + t2 = 0 leads to a
contradiction. Finally, the equation with leader y can be used to eliminate y in the first equation:

(1 + t2) (x+ t y − t)− t ((1 + t2) y − t2 + 1) = (1 + t2)x− 2 t .
A similar simplification can be applied to the second system. We obtain the Thomas decomposition

(1 + t2)x− 2 t = 0

(1 + t2) y − t2 + 1 = 0

t2 + 1 6= 0

x = 0

y − 1 = 0

from which a rational parametrization of the circle can be read off.

Remark 3.12. A Thomas decomposition of an algebraic system is not uniquely determined. It
depends on the chosen total ordering >, the order in which intermediate systems are dealt with
and other choices, such as whether factorizations of left hand sides of equations are taken into
account or not.

The solution sets V in Kn of systems of polynomial equations in x1, . . . , xn, defined over R,
are in one-to-one correspondence with their vanishing ideals in R

IR(V ) := { p ∈ R | p(a) = 0 for all a ∈ V } ,
and these are the radical ideals of R, i.e., the ideals I of R which equal their radicals

√
I := { p ∈ R | pr ∈ I for some r ∈ Z≥0 }

(Hilbert’s Nullstellensatz; cf., e.g., [Eis95]). The solution sets V can then be considered as closed
subsets of Kn with respect to the Zariski topology.

The fibration structure of a simple algebraic system S allows to deduce that the polynomials in
R which vanish on SolK(S) are precisely those polynomials in R whose pseudo-remainders modulo
p1, . . . , ps are zero, where p1 = 0, . . . , ps = 0 are the equations in S. If E is the ideal of R generated
by p1, . . . , ps and q the product of all init(pi), then these polynomials form the saturation ideal

E : q∞ := { p ∈ R | qr · p ∈ E for some r ∈ Z≥0 } .
In particular, simple algebraic systems admit an effective way to decide membership of a polynomial
to the associated radical ideal (cf. also Proposition 3.32 below).

Proposition 3.13 ([Rob14], Prop. 2.2.7). Let the algebraic system S given by
p1 = 0 , p2 = 0 , . . . , ps = 0 , q1 6= 0 , q2 6= 0 , . . . , qt 6= 0

be simple. Moreover, let E be the ideal of R generated by p1, p2, . . . , ps, and q the product of all
init(pi). Then E : q∞ consists of all polynomials in R which vanish on SolK(S). In particular,
E : q∞ is a radical ideal. Given p ∈ R, we have p ∈ E : q∞ if and only if the pseudo-remainder of
p modulo p1, . . . , ps is zero.

Example 3.14. Continuing Example 3.11, let E be the ideal of R generated by the left hand
sides of the equations of the simple algebraic system

(1 + t2)x− 2 t = 0

(1 + t2) y − t2 + 1 = 0

t2 + 1 6= 0
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and define q = 1 + t2. Moreover, let p = (1− t2)x+ 2 t y ∈ R. The pseudo-remainder of p modulo
the equations of the first simple algebraic system displayed at the end of Example 3.11 is computed
as follows. First we have

p′ := (1 + t2) p− (1− t2)
[
(1 + t2)x− 2 t

]
= 2 (1 + t2) t y + 2 (1− t2) t .

Then we have
r := p′ − 2 t

[
(1 + t2) y − t2 + 1

]
= 0 .

Since the pseudo-remainder r is zero, we conclude that p ∈ E : q∞.
3.2. Thomas decomposition of differential systems. Let K be the differential field of mero-
morphic functions on an open and connected subset Ω of Cn with coordinates z1, . . . , zn. We
define the differential polynomial ring R = K{u1, . . . , um} with commuting derivations ∂1, . . . , ∂n
and we set ∆ := { ∂1, . . . , ∂n }.
Definition 3.15. A differential system S, defined over R = K{u1, . . . , um}, is given by finitely
many equations and inequations
(3.4) p1 = 0 , p2 = 0 , . . . , ps = 0 , q1 6= 0 , q2 6= 0 , . . . , qt 6= 0 ,
where p1, . . . , ps, q1, . . . , qt ∈ R and s, t ∈ Z≥0. The solution set of S is

SolΩ(S) := { f = (f1, . . . , fm) | fk : Ω→ C analytic, k = 1, . . . ,m,
pi(f) = 0, qj(f) 6= 0, i = 1, . . . , s, j = 1, . . . , t } .

Remark 3.16. Since each component fk of a solution of (3.4) is assumed to be analytic, the
equations pi = 0 and inequations qj 6= 0 (and their consequences) can be translated into algebraic
conditions on the Taylor coefficients of power series expansions of f1, . . . , fm (around a point in
Ω). An inequation q 6= 0 then turns into a disjunction of algebraic inequations for all coefficients
which result from substitution of power series expansions for u1, . . . , um in q.

An appropriate choice of Ω ⊆ Cn can often only be made after the formal treatment of a
given differential system by the formal methods discussed in these notes (as, e.g., singularities of
coefficients in differential consequences will only be detected during that process). In general, we
assume that Ω is chosen in such a way that the given systems have analytic solutions on Ω.

Clearly, by neglecting the derivations on R = K{u1, . . . , um}, a differential system can be
considered as an algebraic system in the finitely many variables (uk)J which occur in the equations
and inequations. The same recursive representation of polynomials as in the algebraic case is
employed, but the total ordering on the set of variables (uk)J is supposed to respect the action of
the derivations. Then the methods of the previous section on algebraic systems are applicable.
Definition 3.17. A ranking > on R = K{u1, . . . , um} is a total ordering on the set

Mon(∆)u := { (uk)J | 1 ≤ k ≤ m, J ∈ (Z≥0)n }
such that for all j ∈ {1, . . . , n}, k, k1, k2 ∈ {1, . . . ,m}, J1, J2 ∈ (Z≥0)n we have

(a) ∂j uk > uk and
(b) (uk1)J1 > (uk2)J2 implies ∂j (uk1)J1 > ∂j (uk2)J2 .

A ranking > is said to be orderly if
|J1| > |J2| =⇒ (uk1)J1 > (uk2)J2 for all 1 ≤ k1, k2 ≤ m, J1, J2 ∈ (Z≥0)n .

Remark 3.18. Every ranking > on R is a well-ordering (cf., e.g., [Kol73, Ch. 0, Sect. 17,
Lemma 15]), i.e., every descending sequence of elements of Mon(∆)u terminates.
Example 3.19. On the differential polynomial ring K{u} (i.e., where m = 1) with commuting
derivations ∂1, . . . , ∂n the degree-reverse lexicographical ranking (with ∂1 u > ∂2 u > . . . > ∂n u) is
defined for uJ , uJ′ , J = (j1, . . . , jn), J ′ = (j′1, . . . , j′n) ∈ (Z≥0)n, by

uJ > uJ′ :⇐⇒


j1 + . . .+ jn > j′1 + . . .+ j′n or(

j1 + . . .+ jn = j′1 + . . .+ j′n and J 6= J ′ and

ji < j′i for i = max { 1 ≤ k ≤ n | jk 6= j′k }
)
.

For instance, if n = 3, we have u(1,2,1) > u(1,2,0) > u(2,0,1).
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In what follows, we assume that a ranking > on R = K{u1, . . . , um} is fixed. For each p ∈ R\K,
the leader ld(p) and the initial init(p) are defined as in the previous section on algebraic systems.
With the aim of introducing simple differential systems (Definition 3.24) we discuss pseudo-division
for differential polynomials first.

Remark 3.20. Let p1, p2 ∈ R be two non-constant differential polynomials. If p1 and p2 have
the same leader (uk)J and the degree of p1 in (uk)J is greater than or equal to the degree of p2
in (uk)J , then the same pseudo-division as in (3.3) yields a remainder which is either zero, or has
leader less than (uk)J , or has leader (uk)J and smaller degree in (uk)J than p1.

More generally, if ld(p1) = θ ld(p2) for some θ ∈ Mon(∆), then this pseudo-division can be
applied with p2 replaced with θ p2. Note that, by condition (b) of the definition of a ranking,
we have ld(θ p2) = θ ld(p2), and that, if θ 6= 1, the degree of θ p2 in θ ld(p2) is one, so that the
reduction can be applied without assumption on the degree of p2 in ld(p2). Then c1 in (3.3) is
again chosen as a suitable power of init(θ p2). In case θ 6= 1 we have

init(θ p2) = ∂p2

∂ ld(p2) =: sep(p2) ,

and this differential polynomial is referred to as the separant of p2.
In order not to change the solution set of a differential system, when p1 = 0 is replaced with

r = 0, where r is the result of a reduction of p1 modulo p2 or θ p2 as above, it is assumed that
init(p2) and sep(p2) do not vanish on the solution set of the system. By definition of the separant
and the discriminant (cf. Definition 3.6 (d)), non-vanishing of sep(p2) follows from non-vanishing
of disc(p2), as ensured by the algebraic part of Thomas’ algorithm (cf. Remark 3.10).

We assume now that the given differential system is simple as an algebraic system (cf. Defini-
tion 3.7); it could be one of the systems resulting from the algebraic part of Thomas’ algorithm.

Remark 3.21. The symmetry of the second derivatives ∂i ∂j uk = ∂j ∂i uk (and similarly for
higher order derivatives) imposes necessary conditions on the solvability of a system of partial
differential equations. Taking identities like these into account and forming linear combinations
of (derivatives of) the given equations may produce differential consequences with lower ranked
leaders. As already discussed in the case of systems of linear PDEs above, in order to obtain a
complete set of algebraic conditions on the Taylor coefficients of an analytic solution, the system
has to include these integrability conditions. If a system of partial differential equations admits a
translation into algebraic conditions on the Taylor coefficients such that no further integrability
conditions have to be taken into account, then it is said to be formally integrable.

Definition 3.22. Each equation pi = 0 in a differential system is assigned the set of admissible
derivations µ(θi,Mk), where ld(pi) = θi uk and
(3.5) Mk := { θ ∈ Mon(∆) | θ uk ∈ { ld(p1), . . . , ld(ps) } }
is the set of all monomials which define leaders ld(pi) involving the same differential indeterminate
uk. We refer to d pi for d ∈ Mon(µ(θi,Mk)) as the admissible derivatives of pi.

Formal integrability of a differential system is then decided by applying to each equation pi = 0
every of its non-admissible derivations d ∈ µ(θi,Mk) and computing the pseudo-remainder of d pi
modulo p1, . . . , ps and their admissible derivatives. The restriction of the pseudo-division to
admissible derivatives requires Mk to be Janet complete (cf. Definition 2.18). If one of these pseu-
do-remainders is non-zero, then it is added as a new equation to the system, and the augmented
system has to be treated by the algebraic part of Thomas’ algorithm again.

Definition 3.23. A system { p1 = 0, . . . , ps = 0 } of PDEs, where p1, . . . , ps ∈ R \ K, is said
to be passive if the following two conditions hold for ld(p1) = θ1 uk1 , . . . , ld(ps) = θs uks , where
θi ∈ Mon(∆), ki ∈ {1, . . . ,m}.

(a) For all k ∈ {1, . . . ,m}, the set Mk defined in (3.5) is Janet complete.
(b) For all i ∈ {1, . . . , s} and all non-admissible derivations d ∈ µ(θi,Mki), the pseudo-remain-

der of d pi modulo p1, . . . , ps and their admissible derivatives is zero.

Definition 3.24. A differential system S, defined over R, as in (3.4) is said to be simple (with
respect to the ranking >) if the following three conditions hold.
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(a) The system S is simple as an algebraic system (in the finitely many variables (uk)J which
occur in the equations and inequations of S, totally ordered by >).

(b) The system { p1 = 0, . . . , ps = 0 } is passive.
(c) The left hand sides of the inequations q1 6= 0, . . . , qt 6= 0 equal their pseudo-remainders

modulo p1, . . . , ps and their derivatives.
Definition 3.25. Let S be a differential system, defined over R. A Thomas decomposition of S
(or of SolΩ(S)) with respect to the ranking > is a collection of finitely many simple differential
systems S1, . . . , Sr, defined over R, such that the solution set SolΩ(S) of S is the disjoint union
of the solution sets SolΩ(S1), . . . , SolΩ(Sr).
Remark 3.26. Given S as in (3.4) and a ranking on R, a Thomas decomposition of S with
respect to > can be computed by interweaving the algebraic part discussed in Subsection 3.1 and
differential reduction and completion with respect to Janet division.

First of all, a Thomas decomposition of S, considered as an algebraic system, is computed. Each
of the resulting simple algebraic systems is then treated as follows. Differential pseudo-division is
applied to pairs of distinct equations with leaders θ1 uk and θ2 uk such that θ1 | θ2 until either a
non-zero pseudo-remainder is obtained or no such further reductions are possible. Non-zero pseu-
do-remainders are added to the system, the algebraic part of Thomas’ algorithm is applied again,
and the process is repeated. Once the system is auto-reduced in this sense, then it is possibly
augmented with certain derivatives of equations so that the sets Mk defined in (3.5) are Janet
complete. Then it is checked whether the system is passive. If a non-zero remainder is obtained
by a pseudo-division of a non-admissible derivative modulo the equations and their admissible
derivatives, then the algebraic part of Thomas’ algorithm is applied again to the augmented system.
Otherwise, the system is passive. Finally, the left hand side of each inequation is replaced with
its pseudo-remainder modulo the equations and their derivatives, in order to ensure condition (c)
of Definition 3.24. The main reason why this procedure terminates is Dickson’s Lemma, which
shows that the ascending sequence of ideals of the semigroup Mon(∆) formed by the monomials θ
defining leaders of equations (for each differential indeterminate) becomes stationary after finitely
many steps.

For more details on the differential part of Thomas’ algorithm, we refer to [BGL+12], [LH14],
and [Rob14, Subsect. 2.2.2].

An implementation of Thomas’ algorithm for differential systems was developed by M. Lange-
Hegermann at RWTH Aachen University as Maple package DifferentialThomas [BLH], [GLR19].

When displaying a simple differential system we indicate next to each equation its set of admis-
sible derivations.
Example 3.27. Let us consider the ODE (discussed in [Inc56, Example in Sect. 4.7])(

∂u

∂x

)3
− 4xu(x) ∂u

∂x
+ 8u(x)2 = 0 .

The left hand side is represented by the element p := u3
x − 4xuux + 8u2 of the differential

polynomial ring R = K{u} with one derivation ∂x, where K = Q(x) is the field of rational
functions in x, endowed with differentiation with respect to x.

The initial of p is constant, the separant of p is 3u2
x − 4xu. The algebraic part of Thomas’

algorithm only distinguishes the cases whether the discriminant of p vanishes or not. We have
disc(p) = − res(p, sep(p), ux) = −64u3 (27u− 4x3) .

This case distinction leads to the Thomas decomposition
ux

3 − 4xuux + 8u2 = 0 , {∂x}

(27u− 4x3)u 6= 0 , (27u− 4x3)u = 0 , {∂x}
Since both systems contain only one equation, no differential reductions are necessary. The second
simple system could be split into two with equations 27u− 4x3 = 0 and u = 0, respectively. The
solutions of the first simple system are given by u(x) = c (x− c)2, where c is an arbitrary non-zero
constant. The solutions u(x) = 0 and u(x) = 4

27 x
3 of the second simple system are called singular

solutions, the latter one being an envelope of the general solution.
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More about singular solutions can be found, e.g., in [Dar73], [Ham93], [Rit36], [Hub97].

Example 3.28. Let us compute a Thomas decomposition of the system of (nonlinear) PDEs
∂2u

∂x2 −
∂2u

∂y2 = 0 ,

∂u

∂x
− u2 = 0

for one unknown function u(x, y). We define the elements p1 := ux,x − uy,y and p2 := ux − u2

of the differential polynomial ring R = Q{u} with commuting derivations ∂x, ∂y. We choose the
degree-reverse lexicographical ranking > on R with ∂x u > ∂y u (cf. Example 3.19).

Since the monomial ∂x defining the leader of p2 divides the monomial ∂2
x defining the leader of

p1, differential pseudo-division is applied and p1 is replaced with
p3 := p1 − ∂x p2 − 2u p2 = −uy,y + 2u3 .

Janet division associates the sets of admissible derivations to the equations as follows: ux − u2 = 0 , {∂x, ∂y}

uy,y − 2u3 = 0 , { ∗ , ∂y}

The set of monomials { ∂x, ∂2
y } defining the leaders ux and uy,y is Janet complete. The check

whether the above system is passive involves the following reduction:
∂x p3 + ∂2

y p2 − 6u2 p2 − 2u p3 = −2 (uy + u2) (uy − u2) .
This non-zero remainder is a differential consequence which is added as an equation to the system.
In fact, the system can be split into two systems according to the given factorization. For both
systems a differential reduction of p3 modulo the chosen factor is applied because the monomial
∂y defining the new leader divides the monomial ∂2

y defining ld(p3). In both cases the remainder is
zero, the sets of monomials defining leaders are Janet complete, and the passivity checks confirm
formal integrability. We obtain the Thomas decomposition

ux − u2 = 0 , {∂x, ∂y}

uy + u2 = 0 , { ∗ , ∂y}

ux − u2 = 0 , {∂x, ∂y}

uy − u2 = 0 , { ∗ , ∂y}

u 6= 0 .

If the above factorization is ignored, then the discriminant of p4 := u2
y−u4 needs to be considered,

which implies vanishing or non-vanishing of the separant 2uy. This case distinction leads to a
different Thomas decomposition.

Exercise. Complete the computation of the alternative Thomas decomposition at the end of the
previous example.

Remark 3.29. A Thomas decomposition of a differential system is not uniquely determined in
general (cf. also Remark 3.12). In the special case of a system S of linear partial differential equa-
tions no case distinctions are necessary, and the single simple system in any Thomas decomposition
of S is a Janet basis for S.

Exercise. Compute a Thomas decomposition of the differential system given in Example 3.1.
For example, with respect to the degree-reverse lexicographical ranking satisfying ∂t u > ∂x u, a
Thomas decomposition of that differential system is given by (cf. also [Rob14, Ex. 2.2.61])

u = 0 , {∂t , ∂x}

ut − 6uux = 0 , {∂t , ∂x}

ux,x = 0 , { ∗ , ∂x}

u 6= 0 ,

ut = 0 , {∂t , ∂x}

ux,x,x − 6uux = 0 , { ∗ , ∂x}

ux,x 6= 0 ,

u 6= 0 .
Determine the analytic solutions of each of these simple differential systems.
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Example 3.30 ([GLR19], Ex. 14). For computing a Thomas decomposition of the Navier-Stokes
equations given in Example 3.2 (with ρ ≡ 1, (g1, g2, g3) ≡ (0, 0, 0)) we choose the ranking >
on Q(µ){v1, v2, v3, p} with commuting derivations ∂t, ∂x, ∂y, ∂z as follows. First the differential
operators corresponding to the jet variables in question are compared with respect to the degree-
reverse lexicographical ranking satisyfing ∂t > ∂x > ∂y > ∂z. In case of equality of the differential
operators the respective differential indeterminates are compared according to v1 > v2 > v3 > p
(cf. also the definition of the term-over-position ordering in Example 2.31). Then a Thomas
decomposition with respect to > consists of one simple differential system:

(v1)x + (v2)y + (v3)z = 0 , {∂t , ∂x, ∂y , ∂z}

µ (v2)x,x + µ (v2)y,y + µ (v2)z,z − v1(v2)x
− v2(v2)y − v3(v2)z − py − (v2)t = 0 , {∂t , ∂x, ∂y , ∂z}

µ (v1)y,y + µ (v1)z,z − µ (v2)x,y − µ (v3)x,z + v1(v2)y + v1(v3)z
− v2(v1)y − v3(v1)z − px − (v1)t = 0 , {∂t , ∗ , ∂y , ∂x}

µ (v3)x,x + µ (v3)y,y + µ (v3)z,z − v1(v3)x
− v2(v3)y − v3(v3)z − pz − (v3)t = 0 , {∂t , ∂x, ∂y , ∂z}

px,x + py,y + pz,z + 2 (v1)y(v2)x + 2 (v1)z(v3)x + 2 (v2)2
y

+ 2 (v2)y(v3)z + 2 (v2)z(v3)y + 2 (v3)2
z = 0 . {∂t , ∂x, ∂y , ∂z}

The last equation is obtained as

∂xA1 + ∂yA2 + ∂zA3 +
(
µ∆− ∂t − v1∂x − v2∂y − v3∂z + 2 (v2)y + 2 (v3)z −A4

)
A4 ,

where A1, A2, A3, A4 are the differential polynomials given by the equations in Example 3.2 and
∆ is the Laplace operator. (Modulo the other equations in the system the last equation is the
Poisson pressure equation.)

This simple system of the Thomas decomposition allows to enumerate the Taylor coefficients of
v1(t, x, y, z), v2(t, x, y, z), v3(t, x, y, z), p(t, x, y, z) whose values can be chosen arbitrarily in a power
series solution to the Navier-Stokes equations (similarly to Example 2.44). Janet decompositions
of the sets of parametric derivatives for the differential indeterminates v1, v2, v3, p are given by

v1 :
{

1 , { ∂t , ∗ , ∂y, ∂z } v2 :
{

1 , { ∂t , ∗ , ∂y, ∂z }
∂x , { ∂t , ∗ , ∗ , ∂z }

v3 :
{

1 , { ∂t , ∗ , ∂y, ∂z }
∂x , { ∂t , ∗ , ∂y, ∂z }

p :
{

1 , { ∂t , ∗ , ∂y, ∂z }
∂x , { ∂t , ∗ , ∂y, ∂z }

Hence, the corresponding generalized Hilbert series are

1
(1− ∂t) (1− ∂y) (1− ∂z)

for v1(t, x, y, z),

1
(1− ∂t) (1− ∂y) (1− ∂z)

+ ∂x
(1− ∂t) (1− ∂z)

for v2(t, x, t, z), and for v3(t, x, y, z) and for p(t, x, y, z)

1
(1− ∂t) (1− ∂y) (1− ∂z)

+ ∂x
(1− ∂t) (1− ∂y) (1− ∂z)

.
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Therefore, extending the Cauchy-Kovalevskaya Theorem, a Cauchy problem for the Navier-Stokes
equations around an arbitrary point (t0, x0, y0, z0) may be posed as follows:

v1(t, x0, y, z) = f1(t, y, z) ,
v2(t, x0, y, z) = f2(t, y, z) ,

∂v2

∂x
(t, x0, y0, z) = f3(t, z) ,

v3(t, x0, y, z) = f4(t, y, z) ,
∂v3

∂x
(t, x0, y, z) = f5(t, y, z) ,

p(t, x0, y, z) = f6(t, y, z) ,
∂p

∂x
(t, x0, y, z) = f7(t, y, z) ,

where f1, f2, . . . , f7 are arbitrary functions of their arguments which are analytic around the point
(t0, x0, y0, z0). The arbitrariness of analytic solutions is determined by f1, f2, . . . , f7.

Pseudo-reduction of a differential polynomial modulo the equations of a simple differential
system and their derivatives decides membership to the corresponding saturation ideal (cf. also
Proposition 3.13).

Proposition 3.31 ([Rob14], Prop. 2.2.50). Let S be a simple differential system, defined over R,
with equations p1 = 0, p2 = 0, . . . , ps = 0. Moreover, let E be the differential ideal of R which
is generated by p1, . . . , ps and define the product q of the initials and separants of all p1, . . . , ps.
Then E : q∞ is a radical differential ideal. Given p ∈ R, we have p ∈ E : q∞ if and only if the
pseudo-remainder of p modulo p1, . . . , ps and their derivatives is zero.

Similarly to the algebraic case treated in the previous section, the Nullstellensatz for analytic
functions (due to J. F. Ritt and H. W. Raudenbush, cf. [Rit50, Sects. II.7–11, IX.27]) establishes a
one-to-one correspondence of solution sets V := SolΩ(S) of systems of partial differential equations
S = { p1 = 0, . . . , ps = 0 } for m unknown functions, defined over R, and their vanishing ideals in
R = K{u1, . . . , um}

IR(V ) := { p ∈ R | p(f) = 0 for all f ∈ V } .
These are the radical differential ideals of R. The Nullstellensatz implies that, with the notation
of Proposition 3.31, we have IR(SolΩ(S)) = E : q∞.

The following proposition allows to decide whether or not a given differential equation p = 0 is
a consequence of a (not necessarily simple) differential system S by applying pseudo-reductions to
p modulo each of the simple systems in a Thomas decomposition of S.

Proposition 3.32 ([Rob14], Prop. 2.2.72). Let a (not necessarily simple) differential system S be
given by p1 = 0, p2 = 0, . . . , ps = 0, q1 6= 0, q2 6= 0, . . . , qt 6= 0, and let S1, . . . , Sr be a Thomas
decomposition of S with respect to any ranking on R. Moreover, let E be the differential ideal of R
generated by p1, . . . , ps and define the product q of q1, . . . , qt. For i ∈ {1, . . . , r}, let E(i) be the
differential ideal of R generated by the equations in Si and define the product q(i) of the initials
and separants of all these equations in Si. Then we have√

E : q∞ =
(
E(1) : (q(1))∞

)
∩ . . . ∩

(
E(r) : (q(r))∞

)
.

An important class of rankings can be defined as follows (following C. Riquier [Riq10, no. 102]).

Remark 3.33. Let the map ϕ : Mon(∆)u→ Q(n+m)×1 = Qn×1 ⊕Qm×1 be defined by

∂Iuk 7−→ (I, ek)>, I ∈ (Z≥0)n , k = 1, . . . ,m ,

where e1, . . . , em are the standard basis vectors of Qm×1. Then every matrix M ∈ Qr×(n+m)

defines an irreflexive and transitive relation > on Mon(∆)u by

(3.6) v > w :⇐⇒ M ϕ(v) > M ϕ(w) , v, w ∈ Mon(∆)u ,
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where vectors on the right hand side are compared lexicographically. Assume thatM admits a left
inverse (in particular, we have r ≥ n + m). Then the linear map Q(n+m)×1 → Qr×1 induced by
M is injective, and > is a total ordering on Mon(∆)u. Linearity of matrix multiplication implies
that > satisfies condition (b) of Definition 3.17, p. 21, of a ranking. Moreover, condition (a) of
the same definition holds if and only if, for each j = 1, . . . , n, the first non-zero entry of the j-th
column of M is positive. Every ranking > defined by (3.6) is a Riquier ranking, i.e.,

θ1 ui > θ2 ui ⇐⇒ θ1 uj > θ2 uj

holds for all θ1, θ2 ∈ Mon(∆), 1 ≤ i, j ≤ m.

In every equation p = 0 of a simple differential system S we can solve for the term containing
the highest power of the leader ld(p) to obtain an equivalent equation

init(p) ld(p)k = r ,

where r consists of terms which involve lower powers of ld(p) than the one on the left hand side or
whose leaders are ranked lower than ld(p). Moreover, the differential polynomial init(p) does not
vanish for any solution of the simple system S. We obtain a generalization of the Cauchy-Kova-
levskaya Theorem (cf. Theorem 1.1); cf. also [Tho28], [Tho34], [Ger09], [RRW99], [GLR19].

Corollary 3.34. Let S be a simple differential system as in (3.4). Suppose that (z0
1 , . . . , z

0
n) is

a point where all p1, . . . , ps and all q1, . . . , qt are defined and such that no initial or separant
of any of these differential polynomials vanishes. Let formal power series around (z0

1 , . . . , z
0
n) be

defined by

fk :=
∑

J∈(Z≥0)n
ck,J

(z1 − z0
1)J1

J1! . . .
(zn − z0

n)Jn
Jn! , k = 1, . . . ,m ,

with Taylor coefficients ck,J . Then any assignment of values to ck,J for all J ∈ (Z≥0)n such that
∂Juk is not a principal derivative and

qj(f1, . . . , fm)|(z1,...,zn)=(z0
1 ,...,z

0
n) 6= 0 , j = 1, . . . , t ,

gives rise to formal power series solutions
u1(z1, . . . , zn) = f1 , . . . , um(z1, . . . , zn) = fm ,

of S around (z0
1 , . . . , z

0
n) determined by the consistent system of algebraic equations for ck,J

(∂Jpi)(f1, . . . , fm)|(z1,...,zn)=(z0
1 ,...,z

0
n) = 0 , J ∈ (Z≥0)n , i = 1, . . . , s ,

and conversely, every formal power series solution of S around (z0
1 , . . . , z

0
n) stems from such an as-

signment. If > is an orderly Riquier ranking, then sufficiently generic initial conditions determined
by convergent power series yield convergent power series solutions.

3.3. Elimination. Thomas’ algorithm can be used to solve various differential elimination prob-
lems. This subsection presents results on certain rankings on the differential polynomial ring
R = K{u1, . . . , um} which allow to compute all differential consequences of a given differential
system involving only a specified subset of the differential indeterminates u1, . . . , um. In other
words, this technique allows to determine all differential equations which are satisfied by certain
components of the solution tuples. We adopt the notation from the previous subsection.

Definition 3.35. Let I1, I2, . . . , Ik form a partition of {1, 2, . . . ,m} such that i1 ∈ Ij1 , i2 ∈ Ij2 ,
i1 ≤ i2 implies j1 ≤ j2. Let Bj := {ui | i ∈ Ij}, j = 1, . . . , k. Moreover, fix some degree-reverse
lexicographical ordering > on Mon(∆). Then the block ranking on R with blocks B1, . . . , Bk (with
u1 > u2 > . . . > um) is defined for θ1 ui1 , θ2 ui2 ∈ Mon(∆)u, where ui1 ∈ Bj1 , ui2 ∈ Bj2 , by

θ1 ui1 > θ2 ui2 :⇐⇒


j1 < j2 or

(
j1 = j2 and

(
θ1 > θ2 or

( θ1 = θ2 and i1 < i2 )
) )

.

Such a ranking is said to satisfy B1 � B2 � . . .� Bk.

Example 3.36. With respect to the block ranking on K{u1, u2, u3} with blocks {u1}, {u2, u3}
(and u1 > u2 > u3) we have (u1)(0,1) > u1 > (u2)(1,2) > (u3)(1,2) > (u2)(0,1).
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In the situation of the previous definition, for every i ∈ {1, . . . , k}, we consider

K{Bi, . . . , Bk} := K{u | u ∈ Bi ∪ . . . ∪Bk}

as a differential subring of R = K{u1, . . . , um}, endowed with the restrictions of the derivations
∂1, . . . , ∂n to K{Bi, . . . , Bk}.

For any algebraic or differential system S we denote by S= (resp. S 6=) the set of the left hand
sides of all equations (resp. inequations) in S.

Proposition 3.37 ([Rob14], Prop. 3.1.36). Let S be a simple differential system, defined over
R, with respect to a block ranking with blocks B1, . . . , Bk. Moreover, let E be the differential
ideal of R generated by S= and q the product of the initials and separants of all elements of S=.
For every i ∈ {1, . . . , k}, let Ei be the differential ideal of K{Bi, . . . , Bk} generated by Pi :=
S= ∩K{Bi, . . . , Bk} and let qi be the product of the initials and separants of all elements of Pi.
Then, for every i ∈ {1, . . . , k}, we have

(E : q∞) ∩K{Bi, . . . , Bk} = Ei : q∞i .

In other words, the differential equations implied by S which involve only the differential inde-
terminates in Bi ∪ . . . ∪ Bk are precisely those whose pseudo-remainders modulo the elements of
S= ∩K{Bi, . . . , Bk} and their derivatives are zero.

The following well-known example could also be dealt with using Janet bases because the PDEs
are linear.

Example 3.38. The Cauchy-Riemann equations for a complex function of z = x + i y with real
part u and imaginary part v are 

∂u

∂x
− ∂v

∂y
= 0 ,

∂u

∂y
+ ∂v

∂x
= 0 .

The left hand sides are represented by the elements p1 := ux − vy and p2 := uy + vx of the
differential polynomial ring R = Q{u, v} with derivations ∂x and ∂y. Choosing a block ranking on
R satisfying {u} � {v}, the passivity check yields the equation

∂x p2 − ∂y p1 = vx,x + vy,y = 0 .

Similarly, the choice of a block ranking on the differential polynomial ring R satisfying {v} � {u}
yields the consequence ux,x + uy,y = 0. These computations confirm that the real and imaginary
parts of a holomorphic function are harmonic functions.

Similarly to Proposition 3.32 we obtain a corollary to Proposition 3.37 for not necessarily simple
differential systems.

Corollary 3.39 ([Rob14], Cor. 3.1.37). Let S be a (not necessarily simple) differential system,
defined over R, and S1, . . . , Sr a Thomas decomposition of S with respect to a block ranking
with blocks B1, . . . , Bk. Moreover, let E be the differential ideal of R generated by S= and q the
product of all elements of S 6=. Let i ∈ {1, . . . , k} be fixed. For every j ∈ {1, . . . , r}, let E(j) be
the differential ideal of K{Bi, . . . , Bk} generated by Pj := S=

j ∩K{Bi, . . . , Bk} and let q(j) be the
product of the initials and separants of all elements of Pj. Then we have√

E : q∞ ∩ K{Bi, . . . , Bk} = (E(1) : (q(1))∞) ∩ . . . ∩ (E(r) : (q(r))∞) .

We finish with two examples demonstrating applications of differential elimination.

Example 3.40 ([LHR], Ex. 10). A model of a 2-D crane is given by the following system of
ordinary differential equations (cf. [FLMR95, Sect. 4.1] and the references therein), where x(t) and
z(t) are the coordinates of the load of mass m, θ(t) is the angle between the rope and the z-axis
(which points in the same direction as the gravitational force), d(t) the trolley position, T (t) the
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tension of the rope, R(t) the rope length, and g the gravitational constant.


mẍ = −T sin θ ,
m z̈ = −T cos θ +mg ,

x = R sin θ + d ,

z = R cos θ .

We represent cos θ and sin θ by differential indeterminates c and s and add the generating relation
c2 + s2 = 1 to the differential system. Then this equation and the above equations define elements
of the differential polynomial ring Q(m, g){T, c, s, d,R, x, z} with derivation ∂t, for which m and
g are constants.

The task is to decide whether or not {x, z} is a flat output of the system, i.e., whether or not

(a) no consequence of the differential system is a (differential) equation for x and z only, and
(b) for each of the other differential indeterminates u ∈ {T, c, s, d,R } there exists a conse-

quence p = 0 of the differential system, where p is a polynomial in that indeterminate u (of
differential order zero) with coefficients in Q(m, g){x, z} and such that neither the leading
coefficient of p nor the derivative ∂p/∂u vanishes on the solution set of the system.

Condition (a) means that the residue classes of x and z modulo the differential ideal defined by
the system are differentially algebraically independent over Q(m, g), whereas condition (b) implies
that, for each of the differential indeterminates T , c, s, d, R, by the implicit function theorem,
any polynomial p as required can be solved locally for the indeterminate u in the sense that the
trajectory of u can locally be expressed as an analytic function in terms of the trajectories of x
and z (and their derivatives). For more details we refer to [LHR13], [LHR].

Choosing the block ranking > on the differential polynomial ring Q(m, g){T, c, s, d,R, x, z}
which satisfies {T, c, s, d,R} � {x, z} and T > c > s > d > R and x > z, a Thomas decomposition
of the given differential system with respect to > is given by the following seven simple differential
systems (where factorizations of left hand sides of equations have been taken into account).

z T +mzt,tR−mgR = 0 , {∂t }

Rc− z = 0 , {∂t }

zt,tRs− g R s− z xt,t = 0 , {∂t }

zt,t d− g d+ z xt,t − x zt,t + g x = 0 , {∂t }

z2
t,tR

2 − 2 g zt,tR2 + g2R2 − z2 x2
t,t − z2 z2

t,t + 2 g z2 zt,t − g2 z2 = 0 , {∂t }

z (zt,t − g)xt,t (xt,t2 − 2 g zt,t + g2 + z2
t,t) 6= 0

T = 0 , {∂t }

Rc− z = 0 , {∂t }

Rs+ d− x = 0 , {∂t }

d2 − 2x d+ x2 −R2 + z2 = 0 , {∂t }

xt,t = 0 , {∂t }

zt,t − g = 0 , {∂t }

z R (R+ z) (R− z) 6= 0

T −mzt,t +mg = 0 , {∂t }

c+ 1 = 0 , {∂t }

s = 0 , {∂t }

d− x = 0 , {∂t }

R+ z = 0 , {∂t }

xt,t = 0 , {∂t }

z 6= 0
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T +mzt,t −mg = 0 , {∂t }

c− 1 = 0 , {∂t }

s = 0 , {∂t }

d− x = 0 , {∂t }

R− z = 0 , {∂t }

xt,t = 0 , {∂t }

z 6= 0

s T +mxt,t = 0 , {∂t }

xt,t c+ g s = 0 , {∂t }

g2 s2 + x2
t,t s

2 − x2
t,t = 0 , {∂t }

d− x = 0 , {∂t }

R = 0 , {∂t }

z = 0 , {∂t }

xt,t (xt,t2 + g2) 6= 0

c T −mg = 0 , {∂t }

c+ 1 = 0 , {∂t }

s = 0 , {∂t }

d− x = 0 , {∂t }

R = 0 , {∂t }

xt,t = 0 , {∂t }

z = 0 , {∂t }

c T −mg = 0 , {∂t }

c− 1 = 0 , {∂t }

s = 0 , {∂t }

d− x = 0 , {∂t }

R = 0 , {∂t }

xt,t = 0 , {∂t }

z = 0 , {∂t }

We note that the first simple system S1 contains no equation involving derivatives of x and
z only, which shows that (a) is satisfied. Moreover, the other equations in S1 show that (b) is
satisfied as well. Hence, {x, z} is a flat output of S1. The remaining six simple differential systems
describe particular configurations for which {x, z} is not a flat output. In fact, the movement of
the load is restricted by some constraint in these cases (e.g., xt,t = 0 or z = 0, one reason being,
e.g., that vanishing rope tension implies constant acceleration of the load, another being a constant
rope length of zero allowing no vertical movement of the load).

Example 3.41. We consider the following system of nonlinear PDEs for u(t, x), v(t, x), w(t, x):

(3.7)


ut,t + wt,t − v2

t wx = 0 ,
2uwx vt,t + 2ut vt wx + 2u vt wt,x + wt,x = 0 ,

ut,t + vt,x + 2u vt vt,x + ux v
2
t = 0 .

These are the Euler-Lagrange equations obtained for a certain Lagrangian density. For more details
on this example and the approach we refer to [GR16].

We would like to determine all consequences of (3.7) that are equations involving partial differ-
entiation with respect to t of at most order 1. To this end we choose a ranking > on the differential
polynomial ring Q{u, v, w} with commuting derivations ∂t, ∂x such that

∂t ϕ > ∂ix ψ for all i ∈ Z≥0 , ϕ, ψ ∈ {u, v, w} .

For example, we may choose the ranking > which first compares the differential operators cor-
responding to the jet variables in question with respect to the lexicographical ordering satisfying
∂t > ∂x (cf. also Example 2.29, p. 9), and which, in case of equality of the differential operators,
compares the respective differential indeterminates according to u > v > w. A Thomas decomposi-
tion of the given differential system with respect to > is given by the following six simple differential
systems, each of which allows to determine its consequences as required in a straightforward way.
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ut,t + (2u vt + 1) vt,x + ux v
2
t = 0 , {∂t , ∂x}

2uwx vt,t + (2u vt + 1)wt,x + 2wx vt ut = 0 , {∂t , ∂x}

(2u vt + 1) vt,x − wt,t + (ux + wx) v2
t = 0 , {∂t , ∂x}

wx 6= 0 ,

u 6= 0

u = 0 , {∂t , ∂x}

vt = 0 , {∂t , ∂x}

wt,t = 0 , {∂t , ∂x}

wt,x = 0 , { ∗ , ∂x}

wx 6= 0

ut,t + (2u vt + 1) vt,x + ux v
2
t = 0 , {∂t , ∂x}

(2u vt + 1) vt,x,x + 2u v2
t,x + 4ux vt vt,x + v2

t ux,x = 0 , {∂t , ∂x}

(2u vt + 1) vt,x + ux v
2
t − wt,t = 0 , {∂t , ∂x}

wt,x = 0 , { ∗ , ∂x}

wx = 0 , { ∗ , ∂x}

u 6= 0 ,

2u vt + 1 6= 0

u = 0 , {∂t , ∂x}

vt,x = 0 , {∂t , ∂x}

wt,t = 0 , {∂t , ∂x}

wt,x = 0 , { ∗ , ∂x}

wx = 0 { ∗ , ∂x}

ut,t = 0 , {∂t , ∂x}

ut,x = 0 , { ∗ , ∂x}

ux = 0 , { ∗ , ∂x}

2u vt + 1 = 0 , {∂t , ∂x}

wt,t = 0 , {∂t , ∂x}

wt,x = 0 , { ∗ , ∂x}

wx = 0 , { ∗ , ∂x}

u 6= 0

u = 0 , {∂t , ∂x}

vt,x = 0 , {∂t , ∂x}

wt,t − wx v2
t = 0 , {∂t , ∂x}

wt,x = 0 , { ∗ , ∂x}

wx,x = 0 , { ∗ , ∂x}

wx 6= 0 ,

vt 6= 0 .
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