@article{CCIRM_2014__4_1_A3_0, author = {Henri Lombardi}, title = {Alg\`ebre {Constructive}}, journal = {Les cours du CIRM}, note = {talk:3}, publisher = {CIRM}, volume = {4}, number = {1}, year = {2014}, doi = {10.5802/ccirm.22}, language = {fr}, url = {https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.22/} }
Henri Lombardi. Algèbre Constructive. Les cours du CIRM, Tome 4 (2014) no. 1, Exposé no. 3, 48 p. doi : 10.5802/ccirm.22. https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.22/
[1] Alonso M., Coquand T., Lombardi H. Revisiting Zariski Main Theorem from a constructive point of view. Journal of Algebra. 406, (2014) 46–68. http://hlombardi.free.fr/publis/ZMT.pdf | MR | Zbl
[2] Barhoumi S., Lombardi H. An Algorithm for the Traverso-Swan theorem on seminormal rings. Journal of Algebra 320 (2008), 1531–1542. http://hlombardi.free.fr/publis/SemiNor.pdf | MR | Zbl
[3] Coquand T. Sur un théorème de Kronecker concernant les variétés algébriques. C. R. Acad. Sci. Paris, Ser. I 338 (2004), 291–294. | Zbl
[4] Coquand T. Recursive functions and constructive mathematics. À paraître dans : Bourdeau M., Dubucs J. (Eds.), Calculability and Constructivity. Historical and Philosophical Aspects. Logic, Epistemology and the Unity of Science. Dordrecht, Heidelberg, London, New Yort : Springer. | DOI | Zbl
[5] Coquand T., Lombardi H. Hidden constructions in abstract algebra (3) Krull dimension of distributive lattices and commutative rings, p. 477–499 dans : Commutative ring theory and applications, eds. Fontana M., Kabbaj S.-E., Wiegand S. Lecture notes in pure and applied mathematics vol 231. M. Dekker, (2002). http://hlombardi.free.fr/publis/Krull2.pdf
[6] Coquand T., Lombardi H., Quitté C. Generating non-Noetherian modules constructively. Manuscripta mathematica, 115 (2004), 513–520. http://hlombardi.free.fr/publis/forster.pdf | MR | Zbl
[7] Coquand T., Lombardi H., Quitté C. Dimension de Heitmann des treillis distributifs et des anneaux commutatifs. Publications Mathématiques de Besançon. Théorie des nombres (2006). 51 pages. Version corrigée http://hlombardi.free.fr/publis/Heitmann.pdf | Zbl
[8] Coquand T., Lombardi H., Roy M.-F. An elementary characterisation of Krull dimension, dans : From Sets and Types to Analysis and Topology : Towards Practicable Foundations for Constructive Mathematics ; Crosilla L., Schuster P., eds. Oxford University Press, (2005), 239–244. http://hlombardi.free.fr/publis/lebord.pdf
[9] Coquand T., Quitté C. Constructive finite free resolutions. Manuscripta Math., 137, (2012), 331–345. | MR | Zbl
[10] Della Dora J., Dicrescenzo C., Duval D. About a new method for computing in algebraic number fields. In Caviness B.F. (Ed.) EUROCAL ’85. Lecture Notes in Computer Science 204, 289–290. Springer (1985).
[11] Español L. Dimensión en álgebra constructiva. Thèse doctorale. Université de Zaragoza, Zaragoza, (1978).
[12] Español L. Constructive Krull dimension of lattices. Rev. Acad. Cienc. Zaragoza (2) 37 (1982), 5–9. | MR | Zbl
[13] Español L. Le spectre d’un anneau dans l’algèbre constructive et applications à la dimension. Cahiers de topologie et géométrie différentielle catégorique. 24 no 2 (1983), 133–144. | MR | Zbl
[14] Forster O. Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring. Math. Z. 84 (1964), 80–87. | MR | Zbl
[15] Heitmann R. Generating non-Noetherian modules efficiently. Michigan Math. 31 2 (1984), 167–180. | MR | Zbl
[16] Heyting A. After thirty years. In : 1962 Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.) pp. 194–197 Stanford Univ. Press, Stanford, Calif. | DOI | Zbl
[17] Hilbert D. Über das Unendliche. Math. Annalen 95 (1926), 161–190. (Sur l’infini) traduction anglaise dans [34] 367–392. | Zbl
[18] Hochster M. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. 142 (1969), 43–60. | MR | Zbl
[19] Joyal A. Spectral spaces and distibutive lattices. Notices AMS 18 (1971), 393.
[20] Joyal A. Les théorèmes de Chevalley-Tarski et remarques sur l’algèbre constructive. Cahiers de topologie et géometrie différentielle catégorique, 1975. | Zbl
[21] Kaplansky I. Elementary divisors and modules. Transactions of the AMS 66, (1949), 464–491. | MR | Zbl
[22] Lombardi H. Le contenu constructif d’un principe local-global avec une application à la structure d’un module projectif de type fini. Publications Mathématiques de Besançon. Théorie des nombres. Fascicule (1997), 94–95 & 95–96. http://hlombardi.free.fr/publis/protifiBesac.pdf | MR | Zbl
[23] Lombardi H. Dimension de Krull, Nullstellensätze et Évaluation dynamique. Math. Zeitschrift, 242, (2002), 23–46. http://hlombardi.free.fr/publis/Krull1.pdf | Zbl
[24] Lombardi H., Quitté C. Constructions cachées en algèbre abstraite (2) Le principe local global, p. 461–476 dans : Commutative ring theory and applications, eds. Fontana M., Kabbaj S.-E., Wiegand S. Lecture notes in pure and applied mathematics vol 231. M. Dekker, (2002). http://hlombardi.free.fr/publis/LocalGlobal2.pdf
[25] Per Martin-Löf An intuitionistic theory of types : Predicative part. In H. E. Rose and J. C. Shepherdson, editors, Logic Colloquium Ô73, pages 73–118. North Holland, (1975). | DOI | Zbl
[26] Per Martin-Löf The Hilbert-Brouwer controversy resolved ? dans : One hundred years of intuitionism (1907-2007), (Cerisy), (Mark Van Atten & al., editors) Publications des Archives Henri Poincaré, Birkhäuser Basel, (2008), pp. 243–256. | DOI
[27] Poincaré H. La logique de l’infini, Revue de Métaphysique et de Morale 17, 461–482, (1909) réédité dans Dernières pensées, Flammarion (1913). | Zbl
[28] Richman F. Constructive aspects of Noetherian rings. Proc. Amer. Mat. Soc. 44 (1974), 436–441. | MR | Zbl
[29] Seidenberg A. What is Noetherian ? Rend. Sem. Mat. e Fis. Milano 44 (1974), 55–61. | MR | Zbl
[30] Serre J.-P. Modules projectifs et espaces fibrés à fibre vectorielle. Séminaire P. Dubreil, Année 1957/1958. | Zbl
[31] Skolem T. A critical remark on foundational research. Norske Vid. Selsk. Forh., Trondheim 28 (1955), 100–105. | MR | Zbl
[32] Stone M. H. Topological representations of distributive lattices and Brouwerian logics. Cas. Mat. Fys. 67, (1937), 1–25. | Zbl
[33] Swan R. The Number of Generators of a Module. Math. Z. 102 (1967), 318–322. | MR | Zbl
[34] Van Heijenoort J. From Frege to Gödel : A Source Book in Mathematical Logic, 1879-1931 Harvard University Press (1967). | Zbl
[35] Weyl H. Das Kontinuum, Kritische Untersuchungen über die Grundlagen der Analysis. Veit, Leipzig (1918). Traduction italienne Il Continuo. Indagine critiche sui fondamenti dell’ Analisi. par A. B. Veit Riccioli, Bibliopolis, Naples (1977). Traduction anglaise The Continuum. A critical examination of the foundations of Analysis. par S. Polard et T. Bole. Thomas Jefferson Press, University Press of America (1987). En français : Le continu et autres écrits. Traduits et commentés par Jean Largeault. Librairie Vrin (1994). | Zbl
[ACMC] Lombardi H., Quitt C. Algbre Commutative, Mthodes Constructives. Calvage & Mounet, (2011).
[Bishop Bridges] Bishop E., Bridges D. Constructive Analysis. Springer-Verlag, (1985).
[Bishop] Bishop E. Foundations of Constructive Analysis. McGraw Hill, (1967). Réédition : Ishi Press. New York and Tokio, (2012). | Zbl
[Bridges Richman] Bridges D., Richman F. Varieties of Constructive Mathematics. London Math. Soc. LNS 97. Cambridge University Press, (1987).
[Brouwer] Brouwer L. Brouwer’s Cambridge Lectures on Intuitionism, 1951 (Van Dalen ed.) Cambridge University Press, (1981).
[Dynamic] Coste M., Lombardi H., Roy M.-F. Dynamical method in algebra : Effective Nullstellensätze. Annals of Pure and Applied Logic, 111, (2001), 203–256. http://hlombardi.free.fr/publis/NullstellensatzDynamic.pdf | Zbl
[HoTT] Homotopy Type Theory and the Univalent Foundation. (2014). http://homotopytypetheory.org/
[Infini] Toraldo di Francia G. (ed.), L’infinito nella scienza, Istituto della Enciclopedia Italiana, Rome, (1987).
[Johnstone] Johnstone P. Stone spaces, Cambridges studies in advanced mathematics no 3. Cambridge University Press, (1982). | Zbl
[Logic] Coquand T., Lombardi H. A logical approach to abstract algebra. (survey) Math. Struct. in Comput. Science 16 (2006), 885–900. http://hlombardi.free.fr/publis/AlgebraLogicCoqLom.pdf | MR | Zbl
[Modules] Daz-Toca G.-M., Lombardi H., Quitt C. Modules sur les anneaux commutatifs. Calvage Mounet, (2014).
[MRR] Mines R., Richman F., Ruitenburg W. A Course in Constructive Algebra. Universitext. Springer-Verlag, (1988). | Zbl
[Plaidoyer] Coquand T., Lombardi H. Plaidoyer pour l’algèbre constructive. Rapport technique. (2012) Paru en Espagnol dans La Gaceta. http://hlombardi.free.fr/publis/Plaidoyer.pdf
[Seminormal] Coquand T. On seminormality. Journal of Algebra, 305 (1), (2006), 585–602. http://www.cse.chalmers.se/~coquand/min.pdf | MR | Zbl
Cité par Sources :