@article{CCIRM_2010__1_2_263_0, author = {Jean-Pierre Dedieu}, title = {Complexit\'e des m\'ethodes homotopiques pour la r\'esolution des syst\`emes polynomiaux}, journal = {Les cours du CIRM}, pages = {263--280}, publisher = {CIRM}, volume = {1}, number = {2}, year = {2010}, doi = {10.5802/ccirm.10}, language = {fr}, url = {https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.10/} }
TY - JOUR AU - Jean-Pierre Dedieu TI - Complexité des méthodes homotopiques pour la résolution des systèmes polynomiaux JO - Les cours du CIRM PY - 2010 SP - 263 EP - 280 VL - 1 IS - 2 PB - CIRM UR - https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.10/ DO - 10.5802/ccirm.10 LA - fr ID - CCIRM_2010__1_2_263_0 ER -
Jean-Pierre Dedieu. Complexité des méthodes homotopiques pour la résolution des systèmes polynomiaux. Les cours du CIRM, Tome 1 (2010) no. 2, pp. 263-280. doi : 10.5802/ccirm.10. https://ccirm.centre-mersenne.org/articles/10.5802/ccirm.10/
[1] E. Allgower, K. Georg, Numerical continuation methods. Springer (1990).
[2] C. Beltrán, J.-P. Dedieu, G. Malajovich, and M. Shub, Convexity properties of the condition number. SIAM. J. Matrix Anal. Appl. Volume 31, Issue 3, pp. 1491-1506 (2010).
[3] C. Beltrán, J.-P. Dedieu, G. Malajovich, and M. Shub, Convexity properties of the condition number II. Preprint (2010).
[4] C. Beltrán, and L. M. Pardo, On Smale’s 17th Problem : a Probabilistic Positive Solution. FOCM, (2008) 1-43.
[5] C. Beltrán, and L. M. Pardo, Smale’s 17th Problem : Average Polynomial Time to Compute Affine and Projective Solutions. J. AMS, 22 (2009) 363-385.
[6] C. Beltrán, and M. Shub, Complexity of Bézout’s Theorem VII : Distances Estimates in the Condition Metric, FOCM 9 (2009) 179-195.
[7] C. Beltrán, and M. Shub, On the Geometry and Topology of the Solution Variety for Polynomial System Solving (2008) https ://sites.google.com/site/beltranc/preprints
[8] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, Springer, 1998.
[9] P. Boito, and J.-P. Dedieu, The condition metric in the space of rectangular full rank matrices. To appear in SIMAX.
[10] Clarke F., Optimization and Nonsmooth Analysis. J. Wiley and Sons, 1983.
[11] J.-P. Dedieu, Approximate Solutions of Numerical Problems, Condition Number Analysis and Condition Number Theorems. In : The Mathematics of Numerical Analysis, J. Renegar, M. Shub, S. Smale editors, Lectures in Applied Mathematics, Vol. 23, American Mathematical Society, 1996.
[12] J.-P. Dedieu, Points fixes, zéros et la méthode de Newton. Mathématiques et Applications, Springer, 2006.
[13] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhauser, third printing 2007.
[14] T. Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numerica 6 (1997), 399-436.
[15] Overton M., An implementation of the BFGS method, http ://cs.nyu.edu/overton/software/index.html
[16] Pugh C., Lipschitz Riemann Structures. Private communication, 2007.
[17] M. Shub, Complexity of Bézout’s Theorem VI : Geodesics in the Condition Metric, FOCM 9 (2009) 171-178.
[18] M. Shub, and S. Smale, Complexity of Bézout’s Theorem I : Geometric Aspects, J. Am. Math. Soc. (1993) 6 pp. 459-501.
[19] M. Shub, and S. Smale, Complexity of Bézout’s Theorem II : Volumes and Probabilities, in : F. Eyssette, A. Galligo Eds. Computational Algebraic Geometry, Progress in Mathematics. Vol. 109, Birkhäuser, (1993).
[20] M. Shub, and S. Smale, Complexity of Bézout’s Theorem V : Polynomial Time, Theoretical Computer Science, 133, 141-164 (1994).
[21] A. Sommese, C. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific, 2005.
Cité par Sources :